
Barre Chord: Efficient Virtual Memory Translation
for Multi-Chip-Module GPUs

Yuan Feng∗, Seonjin Na†, Hyesoon Kim†, Hyeran Jeon∗
∗University of California, Merced †Georgia Institute of Technology

{yfeng44, hjeon7}@ucmerced.edu, seonjin.na@gatech.edu, hyesoon@cc.gatech.edu

Abstract—With the advancement of processor packaging tech-
nology and the looming end of Moore’s law, multi-chip-module
(MCM) GPUs become a promising architecture to continue the
performance scaling. However, due to the increasing concurrency,
it is challenging to achieve scalable performance. In this study, we
show that the limited parallelism in IOMMU is one of the critical
bottlenecks and propose Barre Chord to fundamentally reduce
the translation loads. By leveraging the unique GPU execution
model and page mapping on MCM-GPUs, Barre translates
virtual addresses in a unit of coalescing group. Once one page
is translated, all the other pages within the same coalescing
group can be translated with simple calculations without page
table walks. Full Barre (F-Barre) further reduces translations by
enabling intra-MCM translation through coalescing information
sharing across GPU chiplets and contiguity-aware coalescing
group expansion. With the combination of Barre and F-Barre, the
Barre Chord outperforms state-of-the-art solutions by an average
of 1.36× (2.09× with coalescing group expansion) with negligible
area overhead (4.22% of a GPU L2 TLB).

I. INTRODUCTION

With the packaging technology evolution, Multi-Chip-
Module (MCM) GPUs have been introduced to continue the
performance scaling in the post-Moore era. Though MCM
design can help increase computing power, there are new
challenges such as the non-uniform memory access (NUMA)
effect and the increased burden of virtual memory translation.
Several studies have effectively reduced NUMA effect through
various page mapping strategies and remote data caching
and coalescing [3], [8], [20], [40]. Though these solutions
indirectly reduce the address translation overhead by enabling
GPU chiplets to find more data and translations from local
memory, we still observe enough room to improve perfor-
mance. For example, Fig 1 shows an almost linear speedup
with more page table walkers (PTWs). However, when we use
infinite PTWs, the speedup is saturated to around 2×. This
is because adding more PTWs is only effective in reducing
PTW queueing delay while leaving the other latencies (e.g.,
page table walk and IOMMU access) in the translation process
unchanged. There should be a more comprehensive solution
that considers the entire translation process and fundamentally
reduces translation costs.

In this paper, we propose Barre Chord1 that introduces
a novel translation method for MCM-GPUs. Barre Chord
consists of Barre and Full-Barre2, each removes page table

1A guitar chord that presses down multiple strings over a fret with a finger.
2A special type of Barre Chord that presses all six strings with a finger.

Fig. 1: Speedups with 8, 16, 32, and infinite PTWs

walks and IOMMU accesses from the translation process,
respectively. Barre rethinks the virtual memory translation in
the context of MCM-GPU and reduces the address translation
overheads by exploiting the unique GPU execution model and
data mapping patterns. An MCM-GPU consists of multiple
GPU chiplets; each chiplet has its local memory. In an MCM-
GPU, applications process a large data on multiple GPU
chiplets. The large data allocates many pages across GPU
chiplets and each page needs to be mapped from virtual
space to physical space individually. Barre takes the unique
opportunity of such multi-GPU-chiplet processing to map the
pages much more structurally, which enables skipping many
page table walks fundamentally.

For an application, GPU chiplets run the same program
code. Thus, the pages of each data tend to be accessed in
similar timings across GPU chiplets. By leveraging this fact,
Barre proposes to map the pages of each data on the same
physical locations across GPU chiplets so that their addresses
can be translated together. We call those pages mapped on the
same physical address across GPU chiplets as a coalescing
group. In other words, the pages within the same coalescing
group have the same physical address except for the GPU
chiplet ID. Therefore, once we know a page’s physical address,
we can calculate the physical address of all the other pages
in the same coalescing group, without expensive page table
walks. The coalescing group is created at the time of page
allocation and is mapped to any physical pages that are
commonly available across GPU chiplets. If there are not
commonly available pages, the pages are mapped individually
as in the conventional page mapping scheme. The coalescing
group information is encoded in the unused bits in the page
table entry (PTE).

Super pages [5], [24], [37] also allocate large data into
physical space systemically. However, a super page is re-
quired to map on consecutive large physical space. Barre

834

2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA)

979-8-3503-2658-1/24/$31.00 ©2024 IEEE
DOI 10.1109/ISCA59077.2024.00065



0

0.5

1

1.5

2

2.5

3

corr fft pr fwt sssp nw matr gups bicg mean

Sp
e

ed
u

p
Super Page -Migration Baseline-4KB-Migration

Fig. 2: Speedup with 2MB super page when migration is
enabled

does not have such restrictions and it coalesces pages across
GPU chiplets only for passing address translation information
among multiple pages. Also, the performance benefit of super
pages is limited in an MCM-GPU due to distributed memory
mapping. With super page, a few hot pages will be mapped on
fewer GPU chiplets and lead to more remote memory accesses
and migrations [41]. As shown in Fig 2, some applications
(fwt and matr) experience a significant performance drop
due to increased remote memory accesses and higher page
migration penalties.

Besides super page, address translation overhead has been
tackled with various other solutions such as L2 TLB shar-
ing [8], [27] and translation prefetch on single- and multi-GPU
platforms. The impact of L2 TLB sharing is diminishing in
MCM-GPUs because advanced page mapping algorithms [20],
[30], [41] reduce remote data accesses; thus, less chance of
finding translations in remote TLBs. The increased concur-
rency in an MCM-GPU drops prefetching accuracy because
the translation requests lose patterns as shown in Fig 5. In
the CPU domain, hashed page table has been used to enable
calculation-based page translation. But, the hashed page tables
have issues of hash collision, impracticality of sharing pages
by multiple processes, and inflexible page mapping. Barre does
not have such problems.

While Barre removes many page table walks, each trans-
lation mandates an IOMMU access. To reduce the hassle
of IOMMU access, Barre Chord proposes Full Barre (F-
Barre), which enables intra-MCM translation. F-Barre extends
Barre by allowing GPU chiplets to share the coalescing
group information. With the coalescing group information,
addresses can be calculated without accessing IOMMU. Inter-
GPU TLB sharing [8], [27] can also reduce IOMMU accesses.
However, it mandates remote GPU chiplet access upon every
TLB misses. On the other hand, F-Barre does not need to
access remote GPU chiplet if the TLB has at least one page’s
address that is in the same coalescing group with the requested
page. Note that when GMMU is used instead of IOMMU,
F-Barre can also remove GMMU accesses through this co-
alescing information sharing. F-Barre also opportunistically
expands coalescing groups. When multiple coalescing groups
are mapped on consecutive physical pages, F-Barre merges
them such that one translation can calculate all pages in the
enlarged coalescing group.

Barre outperforms two state-of-the-art solutions [8], [27] by
an average of 12.8% up to 41%. F-Barre escalates the average
speedup to 1.36× (2.09× with coalescing group expansion).

L2 Cache
L1V Cache

SIMD

Reg

SIMD

Reg

SIMD

Reg

SIMD

Reg

L1V Cache

SIMDRegSIMDReg SIMDReg SIMDReg

L1V Cache

SIMDRegSIMDReg SIMDReg SIMDReg

L1V Cache

Reg
SIMD
Reg Reg Reg

GPU Chip

Compute Unit

CU

L1 TLB

CU

L1 TLB

CU

L1 TLB

CU

L1 TLB

L2 TLB

CU

L1 TLB

CU

L1 TLB

CU

L1 TLB

CU

L1 TLB

L2 TLB

CU

L1 TLB

CU

L1 TLB

CU

L1 TLB

CU

L1 TLB

L2 TLB

CU

L1 TLB

CU

L1 TLB

CU

L1 TLB

CU

L1 TLB

L2 TLB

GPU Package

DRAM

DRAM

DRAM

DRAM

Core 0
Core 1

Host  CPU

Caches

IOMMUPW Queue

PTW

PTW

PTW Page Table

Front

PCIe ATS Packets

SIMD SIMD SIMD

Fig. 3: Baseline MCM-GPU architecture

Our contributions are as below.
• We show that limited parallelism in IOMMU is one of

the critical performance bottlenecks in MCM-GPUs and
analyze the challenges in applying conventional solutions
to MCM-GPUs.

• We propose a novel virtual memory translation method,
Barre Chord, which fundamentally reduces the demands
for page table walks by exploiting the unique architecture
and page mappings of MCM-GPUs.

• The proposed Barre Chord introduces a novel coalescing
group-level calculation-based translation, which provides
better performance while not sacrificing the flexibility of
page table-based translations.

II. BACKGROUND

A. MCM-GPU architecture and address translation

Fig 3 shows a typical architecture of modern MCM-GPUs.
A CPU is connected to an MCM-GPU through PCIe. The
MCM-GPU has multiple GPU chiplets that are connected via
a high-speed interconnect network. Each GPU chiplet has a
dedicated memory. CPU and MCM-GPU use a flat virtual
address. The unified virtual memory is implemented with an
IOMMU residing in the host CPU to govern the translations of
all IO devices including MCM-GPU [8], [27], [40]. Computing
units (CUs) have a private L1 TLB and a shared L2 TLB. Upon
L2 TLB miss, an address translation service (ATS) packet
is sent to the IOMMU through PCIe. Page table walks are
handled by 8-16 threads [8], [27] with multiple page table
walkers (PTWs). The requests are enqueued to a page walk
queue (PW-queue) to be served by PTWs.

B. Page mapping policies in MCM-GPU

In an MCM-GPU, as each GPU chiplet has a local memory
and can access remote GPU chiplet’s memory, memory access
latency is non-uniform. Various page mapping algorithms have
been proposed to reduce the lengthy remote memory accesses
among GPU chiplets [3], [7], [20], [30], [40]. LASP [20]
considers locality when mapping pages to minimize the re-
mote memory accesses. LASP analyzes data access pattern
at compile time and maps consecutive a few pages in either
row- and column dimension on the same GPU chiplet. The
cooperative thread arrays (CTAs) that access those pages are
co-located on the same GPU chiplet to reduce remote memory
accesses. This locality information is used by the GPU driver

835



TABLE I: Benchmarks
Benchmark suite Abbr. App Name L2TLB MPKI Category

polybench gemv gemver 0.015 low
polybench corr correlation 0.045 low
polybench adi adi 0.051 low

Shoc fft fft 0.48 low
HeteroMark pr pagerank 0.828 low

AMD APP SDK fwt fastwalshtransform 2.27 mid
polybench cov covariance 3.24 mid

Panotia sssp sssp 3.38 mid
polybench jac2d jacobi2d 4.78 mid
polybench fdtd2d fdtd2d 10.12 mid
polybench lu lu 17.14 mid
Rodinia nw nw 21.56 mid

polybench atax atax 34.28 mid
Shoc st2d stencil2d 46.90 mid

AMD APP SDK matr matrixtranspose 174.99 high
MAFIA gups gups 724.80 high

polybench bicg bicg 2128.63 high
Shoc spmv spmv 3835.95 high

polybench gesm gesummv 4762.86 high

when mapping virtual pages to GPU chiplets. LASP enforces
CTA and page mapping across GPU chiplets. Within each
GPU chiplet, the assigned CTAs are mapped across CUs as
the execution progresses. The kernel-wide chunking [30]
maps consecutive pages and CTAs on the same GPU chiplet
by assuming a coarse-grained locality. Unlike LASP, it does
not use compiler support and can work as a runtime system
with unmodified, single-GPU optimized applications, while
admittedly giving up some locality opportunities. CODA [21]
is another compiler-assisted solution and co-locates data and
CTA. For the linearly accessed data, consecutive pages and
CTAs are mapped on the same GPU chiplet, similar to
LASP. But, unlike LASP, CODA maps sparse or irregularly
accessed data in a round-robin fashion across GPU chiplets.
Another well-studied on-demand paging [3], [11] captures
the runtime locality. While flexible, runtime page migrations
incur expensive page faults. While Barre is compatible with
the on-demand paging (Section VI), we focus on the virtual
memory translation efficiency by assuming that page mapping
is determined earlier to avoid page fault overhead, similar to
previous works [8], [20], [27], [39], [41]–[43], [47], [51].

C. Contiguity-based page and TLB coalescing

Super pages have been used to mitigate the virtual memory
translation overhead as each translation can cover more ad-
dresses. However, its strict data mapping enforcement raises
issues such as a limited number of available large pages,
memory fragmentation, and high page fault overhead [5],
[7], [22], [26]. As a flexible solution, TLB coalescing has
been proposed [2], [5], [24], [34], [36], [37]. TLB coalescing
dynamically coalesces multiple virtual-to-physical page map-
pings into single TLB entries. However, TLB coalescing still
relies on the temporal but contiguous physical frame number
(PFN) allocations, which has limited opportunities in MCM-
GPUs where each GPU chiplet has a distinct local memory.

III. CHALLENGES OF EFFICIENT VIRTUAL MEMORY
TRANSLATION IN MCM

A. Methodology

We design an AMD GCN3-like MCM-GPU that has four
GPU chiplets in a cycle-level simulator, MGPUSim [44], as
illustrated in Fig 3. We have carefully configured various

0

0.5

1

1.5

2

ge
m

v

co
rr

ad
i

ff
t

p
r

fw
t

co
v

ss
sp

ja
c2

d

fd
td

2
d lu n
w

at
ax

st
2

d

m
at

r

gu
p

s

b
ic

g

sp
m

v

ge
sm

M
ea

n

Low Mid High

Sp
ee

d
u

p

16 MSHRs 32 MSHRs

Fig. 4: Performance impact of L2TLB MSHRs.

parameters according to the earlier studies (full configurations
in Table II). The IOMMU uses 16 PTWs and a 48-entry PW-
queue according to several studies [8], [26], [27], [43]. Our
baseline does not use GMMU by following the configurations
of earlier studies [7], [8], [18], [27], [44]. We discuss how
Barre Chord can be integrated with GMMU (Sec VI) and eval-
uate it over the state-of-the-art GMMU solution (Sec VII-F).
We use physically indexed and physically tagged caches [3],
[8], [24]. LASP [20] is used as a baseline page mapping
algorithm. We use 19 applications having diverse IOMMU
intensity (measured by L2 TLB Misses Per Kilo warp-level
Instructions) as specified in Table I. The applications are
selected from PolyBench [32], Shoc [12], HeteroMark [45],
AMD SDK [15], Panotia [9], Rodinia [10], and MAFIA [19].

B. Address Translation Efficiency in MCM-GPU

To understand the performance impact of address transla-
tion, we measure speedup while increasing the number of
PTWs. Fig 1 shows that the majority of applications have
almost linear speedups with more PTWs, except for some
applications with low IOMMU intensity. This means that
the limited parallelism in IOMMU is one of the critical
performance bottlenecks. To isolate the impact of IOMMU
from that of intra-MCM resources, Fig 4 shows normalized
performance with more L2 TLB MSHRs. On average, dou-
bling the MSHRs only brings 6% performance benefits, where
the vast majority of applications do not see any speedup. This
reveals that the bottleneck is not the capability to hold the
outstanding translation misses but the capability to process
them. Increasing parallelism (e.g., adding more PTWs) will
incur area and power overhead, and also it is not a scalable
solution. The following subsections discuss the challenges in
applying conventional solutions to MCM-GPU.

C. Can PTE prefetch or super page help?

To solve the address translation overhead, several studies
have proposed translation prefetch and large and flexible-sized
pages for single GPU or CPU systems [5], [24], [37]. Those
solutions require two types of contiguity 1) among requested
virtual page numbers (VPNs) and 2) in VPN to PFN map-
ping. According to our experiments, such contiguity is rarely
observed in MCM-GPUs due to increased concurrency and
distributed memory. To understand the translation contiguity
in an MCM-GPU, we design a hypothetical L2 TLB that is
shared across GPU chiplets and compare it with our baseline
MCM-GPU having private TLBs. Fig 5 shows the VPN gap
between any two consecutive translation requests received by
IOMMU. With private L2 TLBs, highly scattered addresses

836



(a) Corr (b) PageRank

Fig. 5: VPN gap distribution

Fig. 6: Speedup of shared L2 TLB over private L2 TLBs

are requested as reflected by more and irregularly presenting
spikes. Therefore, it is more challenging to predict the next
address for translation. Likewise, as pages are mapped across
distinct GPU memories, the mapping between VPN and PFN
is less contiguous. Thus, it is not easy to apply super pages.
Also, as super pages mandate a coarser-grained page mapping,
a few hot pages will intensify the remote memory accesses
(Fig 2) and will offset the advantage of page allocation
algorithms. Therefore, a new approach is necessary.

D. Can L2 TLB sharing help?

Several recent studies have optimized address translation
with inter-GPU L2 TLB sharing [8], [27]. To understand the
impact of TLB sharing under advanced page allocation, we
measure the performance of an oracle case inter-L2 TLB
sharing by using a hypothetical shared L2 TLB with LASP
page mapping. The shared L2 TLB is configured with 4×
more entries while not increasing access latency, and 4× more
processing bandwidths than private TLBs. This ideal shared
L2 TLB excludes the inter-GPU communication overheads
as it is one physical TLB and reduces the impacts of con-
flict/capacity misses with large and high-bandwidth TLB. As
shown in Fig 6, the oracle case shows an average of 6%
speedup over our baseline. This result means that there are still
some shared translations among GPU chiplets due to common
input data. However, less than half of the applications show
speedup. As this result is the ideal speedup of the TLB sharing
with an advanced page allocation, the actual speedup will be
less. Therefore, we need a different solution than TLB sharing.

IV. BARRE

Barre optimizes the address translation process in MCM-
GPU by opportunistically skipping page table walks. For a
GPU application, all CTAs run the same program code while
processing different parts of each input data. Thus, the parts
of each input data are mapped at a similar timing across

GPU chiplets. Barre coalesces these address translations for
the same input data and allows skipping expensive page table
walks once one page in each coalescing group (Section IV-A)
is translated.

In an MCM-GPU, CTAs and their input data are mapped
across GPU chiplets [3], [20]. Due to the distributed mapping,
it is challenging to coalesce the translations. We solve this
problem by enforcing the same data to be mapped on the same
local physical frame numbers (PFNs) in each GPU’s memory
such that the PFN can be calculated once the coalescing
information is retrieved.

A. Coalescing Group

A coalescing group is a batch of pages of one data (allocated
by one GPU malloc API execution e.g., one matrix) that are
mapped on the same local PFNs across multiple GPU chiplets.
A coalescing group consists of 2 to N pages, where N is
the number of GPU chiplets in the MCM-GPU. If the page
allocation algorithm (LASP [20] in our case) maps multiple
pages for a data on each GPU, we partition a data into multiple
coalescing groups. The same colored pages in Fig 7a are in
the same coalescing group. The 12 virtual pages of data 1 are
mapped over three coalescing groups.

B. Barre Operational Overview

Suppose we allocate three data having 12, 4, and 3 pages
each, as illustrated in Fig 7a. Based on LASP, a consecutive
few virtual pages are mapped to each GPU chiplet to gain a
higher locality. Each GPU chiplet has three pages for data 1
(VPNs 0x1 to 0x3 on GPU0, 0x4 and 0x6 on GPU1, etc.) and
one page for data 2 (VPNs from 0xA1 to 0xA4 on GPU0

through GPU3 each). Without Barre, each page needs one
translation separately; a total of 19 translations for the three
data. With Barre, the pages in the same coalescing group can
be served by one translation. The same colored pages in Fig 7a
are in the same coalescing group. Data 1 consists of three
coalescing groups. Data 2 and 3 have one coalescing group
each. Thus, a total of five translations can cover the 19 pages.

Once a page is translated, Barre can calculate all the other
PFNs in the same coalescing group. Thus, the expensive PTWs
can be skipped. Barre can speculatively calculate and send all
the other PFNs of the coalescing group to corresponding GPUs
upon one translation. However, our experiments show this
multicasting drops performance due to the limited outbound
bandwidth of IOMMU. Thus, we configure Barre to cover
the translations for the pending requests only. If all pages in
the same coalescing group are requested at similar times, one
translation can cover all pages.

Suppose that the ATS requests are received and handled by
IOMMU as shown in Fig 7b. In Barre, one of the same colored
pages in the pending queue takes the full latency of IOMMU
operation (e.g., 0x1 in green) while the PFNs of the following
pages of the same color (e.g., 0x4 and 0x7) are calculated
behind the scenes. Barre cuts the total translation latency by
over half. While handling a translation, IOMMU checks the
PW-queue to find pending requests in the same coalescing

837



GPU0
mem

region

GPU1
mem

region

GPU2
mem

region

GPU3
mem

region

Global PFN Map

0x
A0

00

0x
AF

FF
0x

B0
00

0x
BF

FF
0x

C0
00

0x
CF

FF
0x

D
00

0

0x
D

FF
F

…
0xA1

…
0x3

0xB4

…

…
0xA2

…
0x6

0xB5

…

…
0xA3

…
0x9

0xB6

…

…
0xA4

…
0xC

…

… … … … 0x0000

0x0075

0x0100

0x0114

0x0115

Per-G
PU

 Local PFN
 M

ap

0x0FFF

0x1

0xC

Data 2
(4 pages)

0xA1

0xA4

Data 3
(3 pages)

0xB4

0xB6

VPN Map of 
a GPU application

…

…

…

…

62-5263 51-0

1 1 1 1 0 0 0 0 0 0 1

62-5263 51-0

1 1 1 0 0 0 0 0 0 1 0

0x5 0xB 0x2 0x8
… … … …

0x0088

0x1 0x4 0x7 0xA

0x2 0x5 0x8 0xB

Data 1
(12 pages)

(a) VPN-to-PFN mapping for 3 data

Timeline from PCIe (IOMMU)

0
x
4

0x1 0xB4 0xA3

Saved Cycles

0
x
B
5

0
x
B
6F-Barre

0
x
4

0x1

PFN calculation & multicasting

0xB4 0xA3

Saved CyclesBarre
0
x
7

0
x
B
5

0
x
B
6

0x5

0
x
2

0xA4

0
x
A
2

0
x
A
1

0xB

0
x
8

In GPU

0x1 0x4 0xB4 0x5 0x20xB5 0xB60xA3 0xA4 0xA2 0xA1 time time
Baseline

0x7

0xA

0xB 0x8

PTW PW Queue Length

0
x
A

0
x
8

0
x
B

Filter updates

Peer-sharing & calculation

0
x
A
2

0
x
A
1

0
x
A
4

0x5

0
x
2

0xA

0
x
7

(b) Walkthrough: Translation speedup when PW-Queue has 4 entries.

Fig. 7: Barre Chord (a) Page Mapping and (b) Potential Speedup.

EX Unused PFN Unused Flags

63 62 - 52 51 - 12 11 - 9 8 - 0

EX PFN Unused Flags

63 62 - 52 51 - 12 11 - 9 8 - 0

Coal.
bitmap

X86-64 PTE Our PTE

Inter-GPU
coal. order

Fig. 8: Proposed PTE format

group and calculates the PFN by using the coalescing group
information retrieved from the translated PTE.

C. Data Mapping Enforcement

To cover multiple pages with one translation, Barre maps
the pages in the same coalescing group to the same local PFNs
across GPUs. If multiple pages are mapped per GPU, the pages
in the same order are mapped to the same local PFN e.g., 0th
VPNs in all GPUs are mapped to 0x75. This enforcement
will be applied to the data that are allocated with a GPU
malloc API. The available local PFNs can be located by the
GPU driver (e.g., amdgpu_hmm_range_get_pages(.)
in AMD GPU driver). Example 1: In Fig 7a, according to
LASP, data 1 needs to map three consecutive VPNs per GPU.
Suppose that the driver finds three commonly available PFNs
across GPUs; 0x75, 0x88, and 0x114. Then, the first three
virtual pages, 0x1, 0x2, and 0x3 are mapped on GPU0’s
local PFNs 0x75, 0x88, and 0x114, respectively. Likewise, the
second three pages, 0x4, 0x5, and 0x6 are mapped on GPU1’s
local PFNs 0x75, 0x88, and 0x114, respectively. If the starting
global PFNs of each GPU’s memory are 0xA000, 0xB000,
0xC000, and 0xD000, data 1 is mapped on 0xA075, 0xA088,
0xA114, 0xB075, 0xB088, 0xB114, etc. This mapping en-
forcement also supports multi-application (Section VII-I).

D. Page Table Entry Revision

The coalescing group information is encoded in the un-
used bits of x86 64-bit PTE format, as illustrated in Fig 8.
The coal bitmap uses binary values where 1 indicates GPU
participation and 0 indicates non-participation. The current
design supports up to eight GPUs with eight bits. In the inter-
GPU coal order, numeric values like 0, 1, and 2 indicate
the position of the page within the coalescing group, such
as 0th VPN, 1st VPN, or 2nd VPN. Example 2: For the

IOMMU

0xD000
0xD001
0xE001
0xE002

PW Queue

PTW

PTW

PTW
Page Table

Front

PCIe

PEC Buffer
&

≥

Yes PFN 
CalculatorPEC Logic

Translated PTE

Pending VPN

PEC LogicPEC Buffer

Start VPN End VPN InterLv_Gran
40 bits40 bits 14 bits

GPU map

24 bits

≤

Fig. 9: PTE logic and PFN calculator

…

…

…

…

…

…

…

…

… … … …

… … … …

GPU0 GPU1 GPU2 GPU3

0 1 2 3GPU Map

GPU0 GPU1 GPU2 GPU3

1 0 3 2GPU Map

0x1 0x4 0x7 0xA 0x4 0x1 0xA 0x7
Linear

Mapping
Arbitrary
Mapping

Fig. 10: GPU map example for Data 1 in Fig 7a

gray coalescing group in Fig 7a, the coal bitmap has binary
value 11100000 because first three GPUs are involved in this
coalescing. The inter-GPU coal order value is different for
each PTE. For 0xB6, inter-GPU coal order is 010 (= numeric
value 2) as it is the 2nd VPN (from 0th) in the coalescing
group.

E. PEC Logic

To decode the coalescing information from a PTE and
calculate the PFNs of pending requests, we design Page Entry
Coalescing (PEC) logics in the IOMMU, as illustrated in
Fig 9. A PEC logic has comparators and a PFN calculator
and uses a shared PEC buffer that maintains the starting and
ending VPNs, the page interleaving granularity (interlv gran;
the number of consecutive VPNs mapped per GPU chiplet
according to LASP), and the VPN-to-GPU-chiplet mapping
(GPU map) of each data. The PEC buffer has five entries as
all of our benchmark applications use up to five large data.
When the table is full, a new data overwrites an entry having
smaller data’s information. Each PTW has a dedicated PEC
logic.

Though Fig 7a shows an intuitive example where VPNs
are linearly mapped across GPU chiplets, the mapping can be
an arbitrary order. The GPU map indicates the GPU chiplet
ids that the VPNs are mapped to; 0, 3, and 2 indicate that
the 0th to 2nd VPNs are mapped on GPU0, GPU3, and
GPU2, respectively. Fig 10 shows the examples when pages

838



are mapped linearly (left) and arbitrarily (right) on GPUs. 0x1
is the 0th VPN in the coalescing group and is mapped on
GPU0 in the left example so the first entry in GPU map has
value 0, while it is mapped on GPU1 in the right example so
the entry in GPU map has value 1. Note that this mapping
order is determined when CTAs are scheduled. According to
LASP, a consecutive few CTAs (either in row or column order)
and their pages are mapped together on the same GPU chiplet
to enforce locality. Thus, VPNs are consecutively mapped
either within each GPU or across GPUs. This enables all the
coalescing groups of a data to see the same VPN-to-GPU
mapping order (either ascending or descending) regardless of
the value gap between any two neighboring VPNs. Thus, we
allocate one GPU map per data. With this GPU map, we can
locate the GPU chiplet and the global PFN that each VPN is
mapped to.

Example 3: The PEC buffer entry for data 1 in Fig 7a has
Start and End VPNs as 0x1 and 0xC because data 1’s VPNs
are from 0x1 to 0xC. The interlv gran is 3 because each GPU
has three pages for data 1. GPU map is 000001010011...
(= every three bits indicate each VPN’s GPU id; numeric
values are 0, 1, 2, 3,...) because the coalescing groups of data 1
map 0th VPN to GPU0, 1st VPN to GPU1, 2nd VPN to GPU2,
and 3rd VPN to GPU3. Only the first 12 bits are considered
as only four GPUs are involved in this coalescing, which can
be checked with coal bitmap in PTE.

F. PFN Calculation

Once an ATS is enqueued in the PW-queue, an available
PTW dequeues it and translates the requested virtual address
through a page table walk. Once a PTW translates a PTE,
its PEC logic checks if the PTE has more than one 1’s
in the coal bitmap. If so, the PEC logic retrieves the data
information from the PEC buffer by using the PTE’s VPN.
Then, PEC looks up the PW-queue to find the pending requests
belonging to the same data (pending VPN is within the start
and end VPN range of the retrieved coalesced data). Once
found, the pending request and the translated PTE are passed
to the PFN calculator. The pending VPN is checked if it is
within the same coalescing group by calculating candidate
coalescing VPNs. Because each GPU maps interlv gran pages
per data and we enforce the pages of the same data to be
mapped on the same local PFNs across GPU chiplets, any
two pages within the same coalescing group have a VPN gap
as a multiple of interlv gran. Thus, PEC logic can calculate
the coalescing VPNs by decrementing or incrementing PTE’s
VPN by interlv gran. The number of coalescing VPNs will be
the bit count in coal bitmap. If the pending VPN matches with
any coalescing VPNs, the request is in the same coalescing
group. Now, we can decipher the local PFN of this pending
VPN because all pages in the coalescing group have the same
local PFN.

To figure out the global PFN, we check the relative
position (inter-GPU coal order) of this page. The relative
position of the pending page can be estimated by check-
ing its position in the coalescing VPNs that are calculated

λ

…

Cuckoo 
Hash

True/False

FingerPrint

…

VPN Offset

λ

…

Cuckoo 
Hash

FingerPrint

…

VPN Offset

λ

Cuckoo 
Hash

True/False

9 bits 

…

…

…

…

…

…

Assoc = 4

λ

…

Cuckoo 
Hash

True/False

FingerPrint

…

VPN Offset

λ

…

Cuckoo 
Hash

FingerPrint

…

VPN Offset

λ

Cuckoo 
Hash

True/False

9 bits 

…

…

…

…

…

…

Assoc = 4

λ

…

Cuckoo 
Hash

True/False

FingerPrint

…

VPN Offset

λ

…

Cuckoo 
Hash

FingerPrint

…

VPN Offset

λ

Cuckoo 
Hash

True/False

9 bits 

…

…

…

…

…

…

Assoc = 4

λ

…

Cuckoo 
Hash

True/False

FingerPrint

…

VPN Offset

λ

…

Cuckoo 
Hash

CU

L1TLB

CU

L1TLB

CU

L1TB

CU

L1TLB

GPU 2

L2 TLB

PECRCF

CU

L1TLB

CU

L1TLB

CU

L1TB

CU

L1TLB

GPU 3

L2 TLB

PECRCF

CU

L1TLB

CU

L1TLB

CU

L1TB

CU

L1TLB

GPU 0

L2 TLB

PECRCFs

CU

L1TLB

CU

L1TLB

CU

L1TB

CU

L1TLB

GPU 1

L2 TLB

Multi-GPU Package

❶

❷
❸

FingerPrint

…

VPN Offset

λ

Query

Cuckoo 
Hash

True/False

❺
LCF RCFs LCF PEC

❹

9 bits 

…

…

…

…

…

…

Assoc = 4

❻
RCFs/LCF

N (N-1 RCFs, 1 LCF)

Fig. 11: Intra-MCM translation with Cuckoo filters

above. If the pending VPN is 0th VPN in the coalescing
VPNs, the inter-GPU coal order is 0. By checking the (inter-
GPU coal orderpending)th value in the GPU map, we can
identify the GPU chiplet and the global starting PFN that this
page is mapped to. The base PFN of each GPU chiplet memory
(global PFN map in Fig 7a) is available in IOMMU.

Example 4: In Fig 7a, suppose a PTW finishes translating
VPN 0x4 and finds that the PFN is 0xB075. The PTW looks up
the PW-queue and finds 0xA. As 0xA is within data 1’s VPN
range (from 0x1 to 0xC), PEC logic further checks if 0xA is in
the same coalescing group. As the interlv gran of data 1 is 3,
0x4 is incremented by 3 up to two times or decremented up to
once because 0x4’s inter-GPU coal order is 1, which means
there are two greater and one smaller VPNs in the coalescing
group. By adding 3 twice, the result becomes matching with
0xA. Thus, 0xA is in the same coalescing group. So, we now
know that 0xA’s local PFN is 0x75. As 0x4 is incremented
by two times where 0x4 is the 1st VPN in the group, 0xA
is 3rd VPN in the group. Thus, 0xA checks the 3rd value
in GPU map, which is 3 (=011) (see Example 3). As the
GPU3’s base PFN is 0xD000, the 0xA’s PFN is 0xD075, as
can be found in Fig 7a.

G. Driver Modification

We enforce the data mapping by modifying LASP in the
GPU driver. Within the LASP-enabled malloc function, we
replace the standard memory allocation with our algorithm.
We iterate the available PFNs of one GPU chiplet and check if
the PFN is also available in the sharer chiplets. The algorithm
stops when it finds interlv gran PFNs per GPU. Then, we
create a coalescing group per PFN. The coalescing group
information is encoded in the PTE. Once the pages are mapped
on the GPUs, the PEC buffer information is recorded. If the
algorithm cannot find commonly available pages across the
sharer GPUs, we fall back to the driver’s default memory
allocation.

V. FULL BARRE

Barre can effectively reduce page table walks while having
three limitations: 1) every translation needs an IOMMU ac-
cess, 2) the coalescing group size is limited to the number of
sharer GPUs, and 3) the address oblivious PTW scheduling
drops the opportunities of coalesced PFN calculation. To fun-
damentally reduce ATS traffic and maximize the opportunity
for coalesced PFN calculation, we propose Full Barre (abbrev.
F-Barre).

839



GPU1GPU 0

ActionRCF0L2TLBActionLCFL2TLBStep

ATS return0xA10

update LCF0xA10xA11

update RCF0xA1, 0xA20xA10xA12

RCF hit 0xA20xA1, 0xA2Miss 0xA20xA10xA13

0xA1, 0xA2PEC(0xA2)0xA10xA14

0xA1, 0xA2LCF hit 0xA10xA10xA15

0xA1, 0xA2TLB visit0xA10xA16

0xA1, 0xA20xA2 Comp.0xA10xA17

Remote Hit0xA1, 0xA20xA20xA10xA18

Fig. 12: A walkthrough of F-Barre when GPU0 and GPU1 are
in a coalescing group for pages 0xA1 and 0xA2: [steps 0-2]
GPU0 receives a translation for 0xA1 and updates its LCF
and GPU1’s RCF0. [steps 3-4] GPU1 looks up TLB, LCF,
and RCF0 for 0xA2 and RCF hits and TLB and LCF miss;
sends a request to GPU0. GPU0 calculates coalescing VPNs
from the requested 0xA2 with PEC logic. [steps 5-7] GPU0

finds 0xA1 hits in LCF and looks up TLB with 0xA1. Then, it
calculates the PFN of 0xA2 by using coalescing information
of 0xA1. [step 8] GPU1 receives and inserts the PFN to TLB.

A. Intra-MCM Translation

An MCM-GPU allows high-bandwidth communications
among GPU chiplets within it. Thus, it is more efficient to
share translations within the MCM-GPU package rather than
accessing IOMMU via slow PCIe. We propose to share coa-
lescing information among GPU chiplets to enable coalesced
PFN calculations within the MCM-GPU package. This intra-
MCM translation has three challenges: how to know 1) which
TLB entries are within the same coalescing group?, 2) which
chiplet has such TLB entry?, and 3) how to translate addresses
within MCM-GPU? We address these below.

1) Sharer prediction: To locate the sharer GPU chiplet
that has the information for translation, we propose sharer
prediction. The TLB entries that have the VPNs in the same
coalescing group (we call these coalescing VPNs) can provide
the information for translation. Thus, the predictor should be
able to indicate the existence of the coalescing VPNs in each
GPU chiplet’s TLB. This requires the predictor to be updatable
upon TLB insertion and eviction. To fulfill this requirement,
we use cuckoo filter [13]. The cuckoo filter is lightweight and
supports both insertion and deletion of items. However, the
cuckoo filter cannot identify a GPU chiplet because it indicates
the residency of an item via binary output either hit or miss.
Thus, we propose to employ as many filters as the number of
sharer chiplets. We can locate the peer GPU chiplet that has
the coalescing VPNs by checking all the filters and identifying
the one that hits. We call these filters as remote coalescing
group filters (RCFs).

Unlike TLB sharing solutions, as we aim to find a coalesc-
ing (not exact) TLB entry, when L2 TLB misses, it is possible
that the local TLB may have the coalescing VPN while it
does not have the exact requested VPN. If the local TLB
has the coalescing VPN, the requested VPN can be translated
within the GPU chiplet. Thus, upon L2 TLB miss, each GPU
chiplet also searches its TLB to find coalescing VPNs. As each

chiplet also needs to look up its TLB when remote chiplets
send requests, to avoid any contention between regular TLB
accesses from coalescing VPN searches, we employ another
filter namely local coalescing group filter (LCF). According
to our CACTI measurement, filters take only 1.7% of a TLB
access power. Thus, for the coalescing VPN search, each GPU
chiplet checks the LCF first and checks the TLB when LCF
hits.

Example 5: In Fig 11, GPU0 searches a VPN in its TLB,
LCF, and RCFs in parallel (❶). If TLB and LCF miss and an
RCF hits (e.g., RCF1), the GPU chiplet sends a request to the
peer chiplet, GPU1 (❷). Then, GPU1 calculates the coalescing
VPNs (❸) and checks them with its LCF (❹). Once LCF
hits, GPU1 looks up its TLB (❺), calculates the PFN with the
coalescing information, and sends the PFN to GPU0 (❻).

2) Filter update with coalescing VPNs: Each GPU chiplet
(say GPUid) is responsible for updating its LCF and RCFids
in all the other sharer GPUs whenever a TLB entry is added
or evicted. As the goal is to search coalescing VPNs, F-Barre
updates RCFs with the exact VPN as well as the coalescing
VPNs. In Fig 12, once GPU0 receives an ATS response for
VPN 0xA1, it adds 0xA1 to its LCF and sends filter update
messages to the peer chiplets to add 0xA1 and 0xA2 to their
RCF0 because 0xA2 is in the same coalescing group. Then,
when a peer chiplet needs a translation for 0xA2, the RCF0

will hit. This enables peer chiplets to search by any VPN
within the same coalescing group without knowing the exact
VPN in GPU0’s TLB. When 0xA1 is evicted from L2 TLB,
GPU0 will delete 0xA1 from LCF and send the filter update
messages to the peer GPU chiplets to remove 0xA1 and 0xA2
from their RCF0.

GPU chiplets update RCFs with newly inserted TLB entry’s
VPN as well as coalescing VPNs. LCFs are updated with the
newly inserted entry’s VPN only to reflect the actual TLB
contents. The number of coalescing VPNs is the number the
bits set in coal bitmap in the TLB entry. The filter update
message consists of a 1-bit command (add or delete), a 3-
bit sender GPU chiplet id, and a 40-bit coalescing VPN (a
total of 43 bits). The filter update message delivery is on a
best-effort basis (no acknowledgment required) and not in the
critical path (Section VII-E has perf evaluation).

3) Coalescing VPN identification & intra-MCM PFN cal-
culation: Each GPU chiplet can find which coalescing VPN
is in its TLB by checking its LCF with candidate coalescing
VPNs. The coalescing VPNs can be calculated by decre-
menting or incrementing the requested VPN by interlv gran
(Section IV-F and Example 4). To calculate addresses, F-
Barre employs a PEC logic per GPU chiplet. The PFNs are
calculated by using the same calculations in Section IV-F,
Example 4. When IOMMU compiles an ATS response, if
more than one bit is set in coal bitmap in the PTE, it includes
the 10-bit coalescing group information of the PTE and the
118-bit PEC buffer entry into the ATS response packet. The
coalescing group information is added to the L2 TLB entry
with the PFN. This increases the L2 TLB size by 1.3% and
elongates the access latency by 0.5%, according to our CACTI

840



GPU0 GPU1 GPU2 GPU3

0x4
0x5
…

0x6
…

0xA
0xB
…

0xC
…

0x1
0x2
…

0x3
…

0x7
0x8
…

0x9
…

… … … …
Data 1

(12 pages)

…

…

62-5263 51-0

1 1 1 1 1 1 0 1 0 1

0
x
4

0x1 0xB4 0xA3

0
x
7

0
x
B
5

0
x
B
6

Contiguity-aware
F-Barre

In GPU 0
x
2

0
x
A

0
x
5

0
x
8

0
x
B

0
x
A
2

0
x
A
1

0
x
A
4

0
x
4

0x1 0xB4 0xA3

0
x
B
5

0
x
B
6

F-Barre in
Fig 7(b)

In GPU 0
x
A

0
x
8

0
x
B

0
x
A
2

0
x
A
1

0
x
A
4

0x5

0
x
2

0
x
7

Saved 
Cycles

Coal.
bitmap

Intra-GPU
coal. order

Inter-GPU
coal. order

# merged 
coal. groups

Fig. 13: PTE and Walkthrough for expanded coalescing groups

measurements. A PEC buffer information is maintained in a
buffer in the PEC logic. A 5-entry PEC buffer (590 bits) takes
0.89% of L2 TLB size according to CACTI.

B. Contiguity-aware coalescing group expansion

In Barre, each coalescing group only covers one page per
GPU chiplet. This makes the design simple and flexible with-
out requiring any physical memory contiguity. But, when con-
tiguous a few PFNs are available, Barre can opportunistically
exploit the benefit of enlarging the coalescing group by adding
two more parameters to the coalescing group information.

Fig 13 shows the extended PTE format and the walk-
through example. Within the available 11 bits, we add intra-
GPU coal order and # merged coal groups, each means the
position of the page in the coalescing group mapped on the
same GPU chiplet and the number of merged coalescing
groups. Simply put, intra/inter-GPU coal order parameters
are (x, y) coordination of each page within the coalescing
group. With this 2-dimensional coordination, the PFN can be
estimated. The coalescing groups are expanded only when con-
tiguous PFNs are commonly available in all GPU chiplets. As
we opportunistically merge coalescing groups, we can support
fragmented mappings as shown in Fig 14. The contiguity-
aware F-Barre can map a 3-page data when there are not
available consecutive three pages by allocating a two-page
merged coalescing group and another one-page default-size
coalescing group, while super pages cannot.

In the merged coalescing group, as in Barre, once one VPN
is translated, all the other pages in the merged group can
be calculated. With the translated PTE, the first VPN of the
coalescing group is calculated as below.

First_VPNGPUid = VPNfirst + interlv_gran × GPUid

PFNpending = PFNPTE – base_PFNGPUy – j + base_PFNGPUx + i

VPNfirst = VPNPTE – intra-GPU_coal_order - interlv_gran × inter-GPU_coal_order

As each GPU maps # merged coal groups+1 pages starting
from (VPNfirst + interlv gran × inter-GPU coal order),
inter-GPU coal order of the pending page can be estimated.
As discussed in Section IV-F, inter-GPU coal order is used
for finding the GPU id and the global base PFN that the
page is mapped to. As LASP maps consecutive VPNs to each
GPU chiplet, the intra-GPU coal order of the pending VPN
is also estimated. With this information, the pending PFN is
calculated below.

PFNpending = PFNPTE – base_PFNPTE – intra-GPU_coal_orderPTE + 
base_PFNpending + intra-GPU_coal_orderpending

Fig. 14: Contiguity-aware F-Barre vs. Super page

C. Coalescing-aware PTW scheduling

In Barre, PTWs look up the pending coalescing requests
after finishing a page table walk. While processing a page table
walk, another PTW may fetch the pending coalescible requests
and translate them with page table walks. We observe that
notable coalescing opportunities are missed this way. Thus,
we propose a lightweight coalescing-aware PTW scheduling.
Every cycle, the scheduler checks if the request in the front
of the queue is coalescible to any walking translations. If so,
the scheduler de-prioritizes the request by putting it to the end
of the queue such that the request can be fetched by a PTW
that can do a coalesced PFN calculation. The coalescibility is
examined by reusing the calculations in Section IV-F.

VI. DISCUSSIONS

Page mapping: We use LASP in the baseline. Barre
can support uneven page distribution by employing multiple
interlv gran fields per data and is also applicable to dif-
ferent page mapping. In Section VII-H6, Barre consistently
shows speedup with CODA [21], round-robin [25], kernel-
wide chunking [30]. This is because Barre exploits the unique
GPU computing model where all CTAs use the same set
of data. As far as data are mapped across multiple GPU
chiplets and the accesses are not completely random, Barre
can coalesce translations.

Security: Barre places pages in a coalescing group on the
same local PFNs. This does not mean that PFNs can be
estimated from VPNs. Pages will be mapped at run time. We
leverage opportunistically available PFNs across GPUs. The
coalescing groups can be mapped on different PFNs at every
application instance.

Support for dynamically allocated data: Memory can be
allocated during the kernel execution. Barre does not support
these dynamically allocated data because these data tend to
have limited access scope (within each CTA); there is not
much chance to map the data across GPUs.

Support for on-demand paging & migration: Barre can
be integrated with on-demand paging with minimal change. To
maintain the coalescing group, pages will be fetched/evicted
in the unit of coalescing groups. This is practical because the
pages in the same coalescing groups tend to be accessed at
similar times. Barre assumes that the pages in the coalescing
group have a higher affinity to the mapped GPU chiplets
according to LASP’s locality analysis. Thus, there is little
chance that the coalescing pages need to be migrated. But,
if a page has high demand from remote GPU chiplets, we
reset coal bitmap to exclude the page from coalescing.

Scalability: Barre currently supports up to eight GPUs
(up to four GPUs in contiguity-aware Barre Chord) due to

841



0.0
0.5
1.0
1.5
2.0
2.5
3.0

gemv corr adi fft pr fwt cov sssp jac2d fdtd2d lu nw atax st2d matr gups bicg spmv gesm G-Mean

Low Mid High

Sp
ee
du

p

Baseline Valkyrie Least Barre F-Barre-NoMerge F-Barre-2Merge F-Barre-4Merge
3.6 4.2

5.4

6.8
10.0

12.4
18.7

Fig. 15: Overall Performance Comparison

the limited available bits in a PTE. Barre can be adjusted
to support more GPUs by configuring the coal bitmap to
use binary number representation rather than a bit map. For
example, a bitmap 0110 means GPU chiplets 1 and 2. With
the new configuration, it means consecutive six GPU chiplets
in a coalescing group. We leave this as a design choice.
We evaluated the performance impact with more GPUs in
Section VII-H1.

DRAM address interleaving: For better rank, channel,
and bank-level parallelism, commodity DRAMs use advanced
address interleaving. Barre does not make any modification
for this intra-DRAM address mapping. Once the same local
PFN is determined for each coalescing group, the pages will
be mapped across ranks, channels, and banks according to the
individual DRAM controller’s mapping algorithm.

TLB Shootdown: Barre correctly works when TLB shoot-
down. When IOMMU commands L1/L2 TLB shootdown, we
reset all LCFs and RCFs as well such that any residue values
in filters do not lead to mispredictions.

VII. EVALUATION

The basic settings are described in Section III-A and the de-
tailed simulation parameters are listed in Table II. Throughout
this section, we interchangeably use Barre Chord and F-Barre
because F-Barre includes Barre.

A. Overall Performance

We compare the performance with two state-of-the-art
solutions [8], [27]. Valkyrie [8] is extended with an inter-
L1 TLB sharing and L2 TLB prefetch in our MCM-GPU.
Least [27] is implemented by applying an ideal 1024-entry
cuckoo filter (100% true positive) as the local TLB tracker.

TABLE II: Simulation Parameters
Parameter Value
Number of GPU chiplets 4
Number of SAs 4 per Chip
Number of CUs 16 per SA. 256 in total
L1 Vector Cache 16 KB, 4-Way, 16 MSHRs
L1 Inst Cache 32 KB, 4-Way, 16 MSHRs
L1 Scalar Cache 16 KB, 4-Way, 16 MSHRs
L2 Cache 2 MB, 16-way, 64 MSHRs
DRAM 1 TBps, 100ns latency [41]

L1 TLB 64 entries, fully connected, 16 MSHRs,
1 cycle lookup latency, private to CU, LRU.

L2 TLB 512 entries, 16-Way, GPU chip-shared.
10 cycle lookup latency, 16 MSHRs.

IOMMU
16 shared PTWs.
500-cycle page table walks [27], [47],
48 PW-queue entries.

CTA/Page Scheduling LASP [20]
Inter-chip bandwidth 768 GB/s mesh, 32 cycle latency [3], [51]
CPU-GPU Connection PCIe Gen4 x16. 150 cycle latency [26], [27]
Cuckoo Filter 9-bit fingerprint, 4-way, 256 Rows (1024 entries) per filter
Merged Coalescing group 2 by default
PEC buffer 5 entries of 118 bits each

0%
20%
40%
60%
80%

100%

Low Mid High mean

Benchmark Category

ATS Proc. Time Reduction
Barre F-Barre

(a) ATS processing time reduction

0%
20%
40%
60%
80%

100%

Low Mid High mean

Benchmark Category

ATS Coalescing
Barre F-Barre

(b) Coalesced ATS packets

0%
20%
40%
60%
80%

100%

ge
m

v

co
rr

ad
i

ff
t

p
r

fw
t

co
v

ss
sp

ja
c2

d

fd
td

2
d lu n
w

at
ax

st
2d

m
at

r

gu
p

s

b
ic

tg

sp
m

v

ge
sm

M
ea

n

Low Mid High

A
TS

 T
ra

ff
ic

 R
ed

u
ct

io
n

(c) ATS traffic reduction by F-Barre

Fig. 16: Evaluations on ATS traffic

As shown in Fig 15, Barre achieves average of 10.05% to
12.8% speedups over Valkyrie and Least, respectively. F-Barre
(F-Barre-NoMerge) further escalates the average speedups to
1.24× over Barre, which is 1.36× over Least. Though Valkyrie
is effective in sharing translations across cores within a GPU,
the performance gain of its local TLB probing is diminishing
on multi-GPU platforms as the main performance bottleneck
in multi-GPU is inter-GPU interference rather than intra-GPU
locality. The inter-GPU TLB sharing in Least also has less
impact because the opportunity to share exact TLB entries is
reduced with advanced page mapping algorithms.

Impact of coalescing group expansion: We also evaluate
the impact of contiguity-aware coalescing group expansion
by allowing up to 2 and 4 merged coalescing groups (F-
Barre-2Merge and F-Barre-4Merge). With 2 and 4 mergeable
coalescing groups, F-Barre derives an average of 1.34× and
1.53× speedups over baseline F-Barre. Due to the limited
available bits in PTE, we test up to four mergeable groups
but as the performance scales well, we may use other unused
bits to support coarser-grained merging. We will leave this as
future study. We use F-Barre-2Merge as F-Barre for the rest
of the evaluations.

B. ATS Traffic and Response Time

The main source of speedup is the improved ATS handling
efficiency in IOMMU. Fig 16a presents the average ATS
packet processing time reduction. Barre and F-Barre saves
the ATS processing time by an average of 12.6% and 28%,
respectively. As shown in Fig 16c, F-Barre cuts ATS packet
traffic by on average 53% up to 99%, because significant
amount of translations are handled within the MCM-GPU.
gemv, corr, adi had almost 100% ATS traffic reduction

842



0%

20%

40%

60%

80%

100%

Low Mid High Mean
Benchmark Category

Remote Filter Hit Rate Local Filter Hit Rate

(a) Remote and Local Filter Hit
rate

0.8

0.9

1

1.1

1.2

Low Mid High Mean
Benchmark Category

Speedups over 256-row Filter
Filter-512 Rows Filter-1024 Rows

(b) Normalized speedup with di-
verse RCF and LCF size

Fig. 17: Evaluation on Filters

0
1
2
3
4
5

ge
m
v

co
rr ad
i

fft pr fw
t

co
v

ss
sp

ja
c2
d

fd
td
2d lu nw at
ax

st
2d

m
at
r

gu
ps

bi
cg

sp
m
v

ge
sm

G-
M
ea
n

Low Mid High

Sp
ee
du

p

Baseline Barre Barre+Scheduling Barre+Sharing F-Barre
6.7
6.8

8.6
12.5
12.4

Fig. 18: Speedup breakdown

but they show negligible speedup in Fig 15 because they have
low IOMMU intensity and hence the ATS handling is not the
critical performance bottleneck. Contrarily, fft, pr in the
low category show significant speedup because their IOMMU
intensity is at least 10× higher than the other applications in
that category as shown in Table I. Fig 16b plots the percentage
of coalesced ATS packets in IOMMU. On average, Barre and
F-Barre each coalesces 58% and 32% translations. F-Barre
shows less coalescing rate because the majority of coalescing
is happening within the MCM-GPU in F-Barre. Only unique
translation requests are sent as ATS packets in F-Barre.

C. Peer PTE Presence Prediction Accuracy

For RCF and LCF evaluation, we define remote hit rate
as the number of times when a peer GPU can provide the
translation for the total peer translation requests and local filter
hit rate as the true positive rate of the LCF. Fig 17a shows that
the filters have 75.3% remote hit rate and a 98.4% local hit
rate. RCFs show a lower hit rate because we use a best-effort
strategy for the peer filter updates (i.e., no acknowledgment)
and hence there can be missing updates.

D. Speedup Breakdown of F-Barre

Fig 18 shows the individual impacts of two optimizations
of F-Barre. The coalescing-aware PTW scheduling provides
1.34× speedup over Barre by increasing the coalescing op-
portunities. The peer coalescing information sharing increases
the performance to 1.80× over Barre. Because peer sharing
removes PCIe traffic and implicitly provides enlarged TLB
space, the performance gain is higher than PTW scheduling.

E. Traffic Overhead of Coalescing Information Sharing

To understand the performance impact of the peer-sharing
traffic, we compare the F-Barre with an Oracle case where
information is shared with a fixed latency (theoretical latency
of inter-GPU communication) without exhausting bus or port
resources. As shown in Fig 19, F-Barre achieves over 80%
of the theoretical max performance. This means that F-Barre

0

0.2

0.4

0.6

0.8

1

ge
m

v

co
rr

ad
i

ff
t

p
r

fw
t

co
v

ss
sp

ja
c2

d

fd
td

2d lu n
w

at
ax

st
2

d

m
at

r

gu
p

s

b
ic

g

sp
m

v

ge
sm

M
ea

n

Low Mid High

Sp
ee

d
u

p

Oracle Sharing F-Barre

Fig. 19: Traffic overhead of coalescing information sharing

0
1
2
3
4
5

ge
m

v

co
rr ad

i

fft pr fw
t

co
v

ss
sp

ja
c2

d

fd
td

2d lu nw at
ax

st
2d

m
at

r

gu
ps

bi
cg

sp
m

v

ge
sm

G-
M

ea
n

Low Mid High

Sp
ee

du
p

2 GPU 4 GPU 8 GPU 16 GPU
6.8
8.4

10.1

9.6
12.4
10.1
8.7

Fig. 20: Speedup with F-Barre on diverse-scale MCM-GPUs

0%

20%

40%

60%

80%

100%

0

0.5

1

1.5

2

2.5

3

ge
m

v

co
rr

ad
i

ff
t

p
r

fw
t

co
v

ss
sp

ja
c2

d

fd
td

2
d lu n
w

at
ax

st
2

d

m
at

r

gu
p

s

b
ic

g

sp
m

v

ge
sm

G
m

ea
n

Low Mid High

Sp
ee

d
u

p

MGvm F-Barre + MGvm  Remote PTW Reduction

Fig. 21: Speedup on GMMU-integrated platform [41]

has room for further speedup by optimizing the peer-sharing
traffic. We leave this as our future work.

F. Speedup on GMMU-integrated systems

In this section, we evaluate the impact of Barre Chord with
GMMU. MGvm [41] is the state-of-the-art solution that uses
private GMMU per GPU chiplet. To improve the locality of
distributed GMMUs, MGvm extends LASP and uses a coarse-
grained page mapping. Runtime monitoring is also used to
fall back to fine-grained mapping when a few hot pages cause
L2 TLB imbalance. We integrate Barre Chord to MGvm to
evaluate the effectiveness on the GMMU-integrated platform.
Fig 21 shows the performance of MGVm with and without
Barre Chord. On average, Barre Chord further improves the
performance of MGvm by 1.28×. This is because Barre
Chord fundamentally removes local & remote page table walks
and GMMU accesses while MGvm focuses on transforming
remote page table walks to local ones. The red line graph in
Fig 21 shows the reduced remote page table walks by Barre
Chord. On average, Barre Chord can remove over 30% remote
GPU chiplet accesses for page table walk than MGvm.

G. Speedup when page migration is enabled

Some GPUs support run-time migrations. NVIDIA GPUs
monitor page access count and migrate the pages to the
GPUs that have higher locality. Barre Chord also works under
page migration. If some pages within a coalescing group
have a higher locality with a certain GPU, the driver will
migrate them according to the conventional GPU migration

843



0
0.5

1
1.5

2
2.5

ge
m

v

co
rr

ad
i

ff
t

p
r

fw
t

co
v

ss
sp

ja
c2

d

fd
td

2d lu n
w

at
ax

st
2

d

m
at

r

gu
p

s

b
ic

g

sp
m

v

ge
sm

G
-M

ea
n

Low Mid High

Sp
ee

d
u

p
BarreChord Under Migration

Fig. 22: Speedup with Barre Chord when migration is enabled

0
1
2
3
4
5

ge
m

v

co
rr ad

i

fft pr fw
t

co
v

ss
sp

ja
c2

d

fd
td

2d lu nw at
ax

st
2d

m
at

r

gu
ps

bi
cg

sp
m

v

ge
sm

G-
M

ea
n

Low Mid High

Sp
ee

du
p

8 PTWs 16 PTWs 32 PTWs

5.5

11.1
6.8
5.0

16.4
12.4
8.2

Fig. 23: Speedup with F-Barre with diverse PTW counts

policy. By removing the pages from the coalescing groups,
the pages no longer will be included in the Barre Chord
address calculation without any penalty. The other pages in
the coalescing group can still be translated via Barre Chord.
To evaluate the performance impact of migration to Barre
Chord, we implement the state-of-the-art counter-based page
migration scheme, ACUD [7], which uses migration threshold
as 16. Compared to ACUD, Barre Chord achieves an average
of 1.20× speedup, as shown in Fig 22.

H. Sensitivity Study

1) Number of GPU chiplets in an MCM-GPU: We have
described Barre Chord with four GPU chiplets. To understand
the performance impact on diverse-scale MCM-GPUs, we
evaluate F-Barre with 2-16 GPU chiplets by using the method
proposed in Section VI-Scalability. Fig 20 shows that F-Barre
derives 1.54×, 1.86×, 2.04×, and 2.31× speed-ups when
using 2, 4, 8, and 16 GPU chiplets. st2d, matr, gups,
and spmv show almost linear speedup on larger MCM-GPUs
because F-Barre can mitigate the increasing contentions in
PCIe and between PTWs in larger-scale MCM-GPUs.

2) Number of PTWs: We evaluate the speedup with F-
Barre while varying the number of PTWs. As plotted in Fig 23,
the average speedups are 2.12×, 1.86×, and 1.51× when using
8, 16, and 32 PTWs, respectively. Due to increased parallelism,
the speedup of F-Barre is reduced with more PTWs, while F-
Barre still provides notable performance gains over all tested
configurations. This result proves that Barre Chord can be an
alternative solution to improve performance especially when
there is high pressure in IOMMU without increasing PTWs.

3) Cuckoo filter configuration: We evaluate the perfor-
mance impact of different RCF and LCF size. Fig 17b shows
the average speedup of 512- and 1024-row filters normalized
by 256-row filters. On average, filters having 512 rows and
1024 rows can bring 3% and 6% speedups.

4) Page Size: Our baseline uses 4KB pages. We assess the
performance of Barre Chord when using large pages. Fig 24
(left) shows the speedup of F-Barre when using 64KB and
2MB pages. Even with larger pages that inherently reduce the

co
rr fft pr fw
t

ss
sp nw

m
at
r

gu
ps

bi
cg

m
ea
n

64KB 2MB

0

0.5

1

1.5

2

ge
m
v

co
rr ad
i

fft pr fw
t

co
v

ss
sp

ja
c2
d

fd
td
2d lu nw at
ax

st
2d

m
at
r

gu
ps

bi
cg

sp
m
v

ge
sm

M
ea
n

Low Mid High

Sp
ee
du

p

64KB 2MB

2.1 3.42.63.3

x16 larger footprint

Fig. 24: Speedup of F-Barre when using large pages: (left)
with original input size, (right) with 16× larger input

0

0.5

1

1.5

2

2.5

3

3.5

corr fft pr fwt sssp nw matr gups bicg mean

Sp
e

ed
u

p

Super Page -Migration Barre Chord-Migration Baseline-4KB-Migration

Fig. 25: Barre Chord vs. Super page

ATS traffic, Barre Chord derives further performance gain; an
average of 2.5% and 0.12% speedup with 64KB and 2MB.
The main reason for the limited speedup is the small memory
footprint of the simulated workloads compared to the enlarged
page size. To understand the impact by considering scalability,
we use a similar approach in MGvm [41] by enlarging the
application size by 16× (this reflects the scaled page size from
4KB to 64KB). Fig 24 (right) shows the performance of a
subset of applications (a balanced number of workloads from
each TLB MPKI class (low/mid/high).). On average, Barre
Chord achieves 67% and 2% speedups with 64KB and 2MB
pages, respectively.

5) Super page vs. Barre Chord: While the previous sec-
tion shows the portability and speedup of Barre Chord over
various page sizes, this section evaluates the effectiveness of
Barre Chord and the super page (2MB) through head-to-head
comparison. While the super page can enlarge the TLB reach,
it transfers the burden to high page migration penalty and more
remote memory accesses [5], [14], [33]. Upon migration, a
larger chunk of data should be copied between two memory
locations. If there are a few hot data, the entire large page-
worth data should be migrated including those that do not
need to be migrated, which leads to unnecessary ping-poing
migrations. In contrast, Barre Chord does not compromise the
migration size or require strict physical contiguity. Fig 25
shows the performance of the super page using 2MB pages
and Barre Chord using 4KB pages when runtime migration
is enabled. On average, Barre Chord achieves 1.22× speedup
over the super page. For some applications such as fft, the
super page provides better performance due to the linear access
pattern. For some other applications that do not show a clear
linear access pattern and have shared data across GPU chiplets
(pr and fwt), Barre Chord provides more than 2× speedup.

6) Other page allocation schemes: While we use LASP
in our baseline, Barre Chord is applicable to any other
page mapping policies that map data across GPU chiplets.
We evaluate Barre Chord with three page mapping policies,
round-robin (used in [25]), CODA [21] and the kernel-wide

844



0

1

2

3

4

5
ge

m
v

co
rr

ad
i

ff
t

p
r

fw
t

co
v

ss
sp

ja
c2

d

fd
td

2
d lu n
w

at
ax

st
2

d

m
at

r

gu
p

s

b
ic

g

sp
m

v

ge
sm

G
-M

ea
n

Low Mid High

Sp
e

ed
u

p

Round-Robin Kernel-wide chunking CODA
6.82 12.58

Fig. 26: Speedup under diverse page mapping

0.0

0.5

1.0

1.5

L-L L-M L-H M-M M-H H-H Mean
Benchmark Combination

F-Barre under Multi-programming

(a) Barre Chord under GPU multi-
programming

0

0.5

1

1.5

Low Mid High Mean
Benchmark Category

F-Barre with IOTLB

Sp
ee

d-
up

s

(b) F-Barre with IOMMU TLB

Fig. 27: Impacts of different page mapping and IOMMU TLB

chunking [30]. CODA and chunking policies are described
in Section II-B). Fig 26 shows the speedup of BarreChord.
On average, Barre Chord provides 1.25×, 1.48× and 1.62×
speedup with round-robin, kernel-wide chunking and CODA
respectively, which demonstrates that Barre Chord is flexible
to work with other page mapping policies. Barre Chord shows
less speedup with locality-oblivious mapping policies such as
round robin because the increased remote memory accesses
dominate the performance overhead in some applications.

I. Multi-Application Support

Barre Chord considers the process ID and the access control
associated to each page. Thus, Barre Chord can support
multiple applications. To evaluate in a multi-programming en-
vironment, we randomly pick two applications having different
IOMMU intensities (Table I) and run them concurrently on
our baseline MCM-GPU. We apply fine-grained CTA-level
sharing, where CTAs from both applications are co-located
on any CUs by sharing on-chip resources [6], [46], [48].
Fig 27a shows the speedup with F-Barre. On average, F-Barre
derives 17% speedup across all combinations. Middle-Middle
combination shows the highest speedup at 34.7%. This is
because the translation is not a critical bottleneck of Low-
Low combination while intensive traffic in IOMMU hinder
performance improvement for the High-High combination.

J. Combined with IOMMU TLB

The effectiveness of Barre Chord is evaluated by adding a
2048-entry IOMMU TLB having 200-cycle access latency [27]
to the system. As shown in Fig 27b, F-Barre provides a further
speedup by an average of 1.22× (up to 2.35×).

K. Hardware Overhead

In Barre, we add one PEC logic per PTW and one shared
PEC buffer in the IOMMU. The PEC buffer has five 118-bit
entries (total of 590 bits). Each PEC logic uses two com-
parators and a PFN calculator that is a small ALU with two
subtractors/adders, and one multiplier. In F-Barre, we integrate
four cuckoo filters (3 RCFs and 1 LCF), a PEC logic, and a

PEC buffer per GPU chiplet. Each cuckoo filter has 256 rows
and 4-way associativity, thus a total of 1024 9-bit fingerprints,
which gives a 1.53% theoretical false positive rate. The total
size of the four filers and a PEC buffer in one GPU chiplet
is 4.57 KB, which takes 4.21% area overhead compared to a
GPU L2 TLB according to CACTI [31] measurement.

VIII. RELATED WORK

TLB Optimization: TLB performance optimization has
been extensively studied on CPUs [1], [29], [34]–[37], [49],
[50], GPUs [5], [18], [24], [26], [27], [39], [47], and accelera-
tors [17], [23], [38]. Out of them, the most relevant works are
TLB coalescing. Mosaic [5] arbitrates to use of a (coalesced)
large page or a normal page in the unified virtual memory
system based on applications’ characteristics and targets to
balance the trade-off of address translation and on-demand
paging overhead. Snakebyte [24] opportunistically coalesces
pages in a page group unit through runtime memory contiguity
monitoring. Haria et al. [16] decouples the translation process
and access control for heterogeneous systems and enforces
strict linear mapping between virtual and physical addresses.

MCM-GPU & Multi-GPU Architecture Efficiency: Re-
cently several studies explored efficient memory mapping
and communication methods in MCM-GPUs and Multi-GPU
architectures [3], [4], [20], [26]–[28], [41], [51]. Besides the
studies [20], [27] already described earlier, Arunkumar et
al. [3] propose the MCM design and explore different design
spaces and optimizations, such as L1.5D cache, distributed
CTA scheduling and first-touch page placement. MGvm [41]
extends the locality type identified by [20] to TLB locality in
a distributed page table scenario. FW-Trans [26] focuses on
efficient page faults handling.

To the best of our knowledge, Barre Chord is the first study
on the interplay between MCM-GPUs and IOMMU. We reveal
that MCM-GPUs provide unique opportunities to coalesce
page entries that enable novel calculation-based translation.
Barre Chord is orthogonal to most existing contiguity-aware
solutions as we do not require contiguous physical memory
availability. Barre Chord shows superior performance than two
most relevant state-of-the-art solutions [8], [27].

IX. CONCLUSION

Address translation is a critical performance bottleneck in
an MCM-GPU. We propose Barre Chord that fundamentally
reduces virtual memory translation overhead through transla-
tion coalescing, calculation-based translation, and intra-GPU
translation. With a simple page mapping enforcement that
is uniquely exploitable in MCM-GPUs, Barre Chord reduces
the burden of expensive page table walks without sacrificing
flexibility. Barre Chord shows superior performance compared
to two state-of-the-art solutions.

ACKNOWLEDGEMENT

This work was supported by NSF CCF-2114514. Part of
this research was conducted using Pinnacles (NSF MRI, #
2019144) at the Cyber infrastructure and Research Technolo-
gies (CIRT) at University of California, Merced.

845



REFERENCES

[1] R. Achermann, A. Panwar, A. Bhattacharjee, T. Roscoe, and J. Gandhi,
“Mitosis: Transparently self-replicating page-tables for large-memory
machines,” in Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2020, pp. 283–300.

[2] C. Alverti, S. Psomadakis, V. Karakostas, J. Gandhi, K. Nikas,
G. Goumas, and N. Koziris, “Enhancing and exploiting contiguity for
fast memory virtualization,” in 2020 ACM/IEEE 47th Annual Interna-
tional Symposium on Computer Architecture (ISCA). IEEE, 2020, pp.
515–528.

[3] A. Arunkumar, E. Bolotin, B. Cho, U. Milic, E. Ebrahimi, O. Villa,
A. Jaleel, C.-J. Wu, and D. Nellans, “Mcm-gpu: Multi-chip-module gpus
for continued performance scalability,” in 2017 ACM/IEEE 44th Annual
International Symposium on Computer Architecture (ISCA), 2017, pp.
320–332.

[4] A. Arunkumar, E. Bolotin, D. Nellans, and C.-J. Wu, “Understanding
the future of energy efficiency in multi-module gpus,” in 2019 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), 2019, pp. 519–532.

[5] R. Ausavarungnirun, J. Landgraf, V. Miller, S. Ghose, J. Gandhi,
C. J. Rossbach, and O. Mutlu, “Mosaic: A gpu memory manager
with application-transparent support for multiple page sizes,” in 2017
50th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2017, pp. 136–150.

[6] A. Barnes, F. Shen, and T. G. Rogers, “Mitigating gpu core partitioning
performance effects,” in 2023 IEEE International Symposium on High-
Performance Computer Architecture (HPCA), 2023, pp. 530–542.

[7] T. Baruah, Y. Sun, A. T. Dinçer, S. A. Mojumder, J. L. Abellán,
Y. Ukidave, A. Joshi, N. Rubin, J. Kim, and D. Kaeli, “Griffin:
Hardware-software support for efficient page migration in multi-gpu
systems,” in 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2020, pp. 596–609.

[8] T. Baruah, Y. Sun, S. A. Mojumder, J. L. Abellán, Y. Ukidave,
A. Joshi, N. Rubin, J. Kim, and D. Kaeli, “Valkyrie: Leveraging
inter-tlb locality to enhance gpu performance,” in Proceedings of
the ACM International Conference on Parallel Architectures and
Compilation Techniques, ser. PACT ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 455–466. [Online].
Available: https://doi.org/10.1145/3410463.3414639

[9] S. Che, B. M. Beckmann, S. K. Reinhardt, and K. Skadron, “Pannotia:
Understanding irregular gpgpu graph applications,” in 2013 IEEE In-
ternational Symposium on Workload Characterization (IISWC). IEEE,
2013, pp. 185–195.

[10] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in 2009 IEEE International Symposium on Workload Characterization
(IISWC), 2009, pp. 44–54.

[11] N. Corp. [Online]. Available: https://images.nvidia.com/content/pdf/
tesla/whitepaper/pascal-architecture-whitepaper.pdf

[12] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C.
Roth, K. Spafford, V. Tipparaju, and J. S. Vetter, “The scalable
heterogeneous computing (shoc) benchmark suite,” in Proceedings
of the 3rd Workshop on General-Purpose Computation on Graphics
Processing Units, ser. GPGPU-3. New York, NY, USA: Association
for Computing Machinery, 2010, p. 63–74. [Online]. Available:
https://doi.org/10.1145/1735688.1735702

[13] B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher,
“Cuckoo filter: Practically better than Bloom,” in ACM International
on Conference on Emerging Networking Experiments and Technologies,
2014.

[14] K. Gosakan, J. Han, W. Kuszmaul, I. N. Mubarek, N. Mukherjee,
K. Sriram, G. Tagliavini, E. West, M. A. Bender, A. Bhattacharjee,
A. Conway, M. Farach-Colton, J. Gandhi, R. Johnson, S. Kannan,
and D. E. Porter, “Mosaic pages: Big tlb reach with small pages,”
in Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and Operating
Systems, Volume 3, ser. ASPLOS 2023. New York, NY, USA:
Association for Computing Machinery, 2023, p. 433–448. [Online].
Available: https://doi.org/10.1145/3582016.3582021

[15] GPUOpen-LibrariesAndSDKs, “Releases · gpuopen-
librariesandsdks/ocl-sdk.” [Online]. Available: https://github.com/
GPUOpen-LibrariesAndSDKs/OCL-SDK/releases

[16] S. Haria, M. D. Hill, and M. M. Swift, “Devirtualizing memory
in heterogeneous systems,” in Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’18. New York,
NY, USA: Association for Computing Machinery, 2018, p. 637–650.
[Online]. Available: https://doi.org/10.1145/3173162.3173194

[17] B. Hyun, Y. Kwon, Y. Choi, J. Kim, and M. Rhu, “Neummu: Archi-
tectural support for efficient address translations in neural processing
units,” in Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2020, pp. 1109–1124.

[18] A. Jaleel, E. Ebrahimi, and S. Duncan, “Ducati: High-performance
address translation by extending tlb reach of gpu-accelerated systems,”
ACM Transactions on Architecture and Code Optimization (TACO),
vol. 16, no. 1, pp. 1–24, 2019.

[19] A. Jog, O. Kayiran, T. Kesten, A. Pattnaik, E. Bolotin, N. Chatterjee,
S. W. Keckler, M. T. Kandemir, and C. R. Das, “Anatomy of gpu
memory system for multi-application execution,” in Proceedings of the
2015 international symposium on memory systems, 2015, pp. 223–234.

[20] M. Khairy, V. Nikiforov, D. Nellans, and T. G. Rogers, “Locality-
centric data and threadblock management for massive gpus,” in 2020
53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2020, pp. 1022–1036.

[21] H. Kim, R. Hadidi, L. Nai, H. Kim, N. Jayasena, Y. Eckert, O. Kayiran,
and G. Loh, “Coda: Enabling co-location of computation and data for
multiple gpu systems,” ACM Trans. Archit. Code Optim., vol. 15, no. 3,
sep 2018. [Online]. Available: https://doi.org/10.1145/3232521

[22] H. Kim, J. Sim, P. Gera, R. Hadidi, and H. Kim, “Batch-aware unified
memory management in gpus for irregular workloads,” in Proceedings of
the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2020, pp. 1357–1370.

[23] J. Landgraf, M. Giordano, E. Yoon, and C. J. Rossbach, “Reconfigurable
virtual memory for fpga-driven i/o,” in Proceedings of the 28th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3, 2023, pp. 556–571.

[24] J. Lee, J. M. Lee, Y. Oh, W. J. Song, and W. W. Ro, “Snakebyte: A tlb
design with adaptive and recursive page merging in gpus,” in 2023 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA), 2023, pp. 1195–1207.

[25] B. Li, Y. Guo, Y. Wang, A. Jaleel, J. Yang, and X. Tang,
“Idyll: Enhancing page translation in multi-gpus via light weight
pte invalidations,” in Proceedings of the 56th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO ’23.
New York, NY, USA: Association for Computing Machinery, 2023,
p. 1163–1177. [Online]. Available: https://doi.org/10.1145/3613424.
3614269

[26] B. Li, J. Yin, A. Holey, Y. Zhang, J. Yang, and X. Tang, “Trans-fw: Short
circuiting page table walk in multi-gpu systems via remote forwarding,”
in 2023 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, 2023, pp. 456–470.

[27] B. Li, J. Yin, Y. Zhang, and X. Tang, “Improving address
translation in multi-gpus via sharing and spilling aware tlb design,”
in MICRO-54: 54th Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 1154–1168. [Online]. Available:
https://doi.org/10.1145/3466752.3480083

[28] Y. Li, H. Qi, G. Lu, F. Jin, Y. Guo, and X. Lu, “Understanding
hot interconnects with an extensive benchmark survey,” BenchCouncil
Transactions on Benchmarks, Standards and Evaluations, vol. 2, no. 3,
p. 100074, 2022.

[29] A. Margaritov, D. Ustiugov, E. Bugnion, and B. Grot, “Prefetched
address translation,” in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, 2019, pp. 1023–1036.

[30] U. Milic, O. Villa, E. Bolotin, A. Arunkumar, E. Ebrahimi, A. Jaleel,
A. Ramirez, and D. Nellans, “Beyond the socket: Numa-aware gpus,”
in 2017 50th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), 2017, pp. 123–135.

[31] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Cacti 6.0:
A tool to model large caches,” HP laboratories, vol. 27, p. 28, 2009.

[32] Ohio State University. [Online]. Available: https://sourceforge.net/
projects/polybench/

[33] A. Panwar, A. Prasad, and K. Gopinath, “Making huge pages actually
useful,” in Proceedings of the Twenty-Third International Conference

846



on Architectural Support for Programming Languages and Operating
Systems, 2018, pp. 679–692.

[34] C. H. Park, T. Heo, J. Jeong, and J. Huh, “Hybrid tlb coalescing:
Improving tlb translation coverage under diverse fragmented memory
allocations,” in Proceedings of the 44th Annual International Symposium
on Computer Architecture, 2017, pp. 444–456.

[35] C. H. Park, I. Vougioukas, A. Sandberg, and D. Black-Schaffer,
“Every walk’s a hit: Making page walks single-access cache hits,”
in Proceedings of the 27th ACM International Conference on
Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 128–141. [Online]. Available:
https://doi.org/10.1145/3503222.3507718

[36] B. Pham, A. Bhattacharjee, Y. Eckert, and G. H. Loh, “Increasing tlb
reach by exploiting clustering in page translations,” in 2014 IEEE 20th
International Symposium on High Performance Computer Architecture
(HPCA), 2014, pp. 558–567.

[37] B. Pham, V. Vaidyanathan, A. Jaleel, and A. Bhattacharjee, “Colt: Coa-
lesced large-reach tlbs,” in 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture, 2012, pp. 258–269.

[38] J. Picorel, D. Jevdjic, and B. Falsafi, “Near-memory address translation,”
in 2017 26th International Conference on Parallel Architectures and
Compilation Techniques (PACT). Ieee, 2017, pp. 303–317.

[39] J. Power, M. D. Hill, and D. A. Wood, “Supporting x86-64 address
translation for 100s of gpu lanes,” in 2014 IEEE 20th International
Symposium on High Performance Computer Architecture (HPCA), 2014,
pp. 568–578.

[40] B. Pratheek, N. Jawalkar, and A. Basu, “Improving gpu multi-tenancy
with page walk stealing,” in 2021 IEEE International Symposium on
High-Performance Computer Architecture (HPCA), 2021, pp. 626–639.

[41] B. Pratheek, N. Jawalkar, and A. Basu, “Designing virtual memory
system of mcm gpus,” in 2022 55th IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2022, pp. 404–422.

[42] X. Ren, D. Lustig, E. Bolotin, A. Jaleel, O. Villa, and D. Nellans,
“Hmg: Extending cache coherence protocols across modern hierarchical
multi-gpu systems,” in 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2020, pp. 582–595.

[43] S. Shin, G. Cox, M. Oskin, G. H. Loh, Y. Solihin, A. Bhattacharjee, and
A. Basu, “Scheduling page table walks for irregular GPU applications,”
in ISCA. IEEE, 2018, pp. 180–192.

[44] Y. Sun, T. Baruah, S. A. Mojumder, S. Dong, X. Gong, S. Treadway,
Y. Bao, S. Hance, C. McCardwell, V. Zhao, H. Barclay, A. K. Ziabari,
Z. Chen, R. Ubal, J. L. Abellán, J. Kim, A. Joshi, and D. Kaeli, “Mg-
pusim: Enabling multi-gpu performance modeling and optimization,” in
2019 ACM/IEEE 46th Annual International Symposium on Computer
Architecture (ISCA), 2019, pp. 197–209.

[45] Y. Sun, X. Gong, A. K. Ziabari, L. Yu, X. Li, S. Mukherjee, C. Mc-
cardwell, A. Villegas, and D. Kaeli, “Hetero-mark, a benchmark suite
for cpu-gpu collaborative computing,” in 2016 IEEE International
Symposium on Workload Characterization (IISWC), 2016, pp. 1–10.

[46] X. S. Tan, P. Golikov, N. Vijaykumar, and G. Pekhimenko, “Gpupool:
A holistic approach to fine-grained gpu sharing in the cloud,” in
Proceedings of the International Conference on Parallel Architectures
and Compilation Techniques, 2022, pp. 317–332.

[47] X. Tang, Z. Zhang, W. Xu, M. T. Kandemir, R. Melhem, and J. Yang,
“Enhancing address translations in throughput processors via compres-
sion,” in Proceedings of the ACM International Conference on Parallel
Architectures and Compilation Techniques, 2020, pp. 191–204.

[48] Q. Xu, H. Jeon, K. Kim, W. W. Ro, and M. Annavaram, “Warped-
slicer: Efficient intra-sm slicing through dynamic resource partitioning
for gpu multiprogramming,” in Proceedings of the 43rd International
Symposium on Computer Architecture, ser. ISCA ’16. IEEE Press, 2016,
p. 230–242. [Online]. Available: https://doi.org/10.1109/ISCA.2016.29

[49] Z. Yan, D. Lustig, D. Nellans, and A. Bhattacharjee, “Nimble page
management for tiered memory systems,” in Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, 2019, pp. 331–345.

[50] Z. Yan, D. Lustig, D. Nellans, and A. Bhattacharjee, “Translation
ranger: Operating system support for contiguity-aware tlbs,” in
Proceedings of the 46th International Symposium on Computer
Architecture, ser. ISCA ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 698–710. [Online]. Available:
https://doi.org/10.1145/3307650.3322223

[51] S. Zhang, M. Naderan-Tahan, M. Jahre, and L. Eeckhout, “Sac:
Sharing-aware caching in multi-chip gpus,” in Proceedings of the 50th
Annual International Symposium on Computer Architecture, ser. ISCA
’23. New York, NY, USA: Association for Computing Machinery,
2023. [Online]. Available: https://doi.org/10.1145/3579371.3589078

847


