
Let-Me-In:
(Still) Employing In-pointer

Bounds Metadata for Fine-grained
GPU Memory Safety

Jaewon Lee†, Euijun Chung†, Saurabh Singh†, Seonjin Na†,
Yonghae Kim‡, Jaekyu Lee§, and Hyesoon Kim†

Georgia Institute of Technology†, Arm‡, Intel§

• Provide a protection against the unauthorized memory
access which leads to system vulnerability.

• Ex.1) Buffer overflow.
• e.g. Stack smashing attack

Memory Safety

Buffer A Buffer BBUFFER OVERFLOW

A B

Allocate adjacent buffers A and B.

Trigger the buffer overflow on buffer A.

Read on B will obtain the incorrect value.

2

3

• Ex.2) Dangling Pointers.

Memory Safety

Never Allocated

Once allocated but freed

Allocated but not initialized

Dangling

Pointer

Arise of The Concern on GPU Security

Passive

Device
Limited Usage

Generic

Data

Previous

GPU

Now

4

Active

Device

General
Purpose

Private

Data

Research on GPU Memory Safety

is actively going on!

• Previous studies focused on per-kernel memory safety
solution.
• Memory safety on buffers allocated by host, accessed by

threads

•Not sufficient for recent attacks
• e.g. Stack-smashing attacks on GPUs[1].

•Need a per-thread memory safety solution.
• Protection on memory chunks allocated and used by each

thread at RUNTIME

Now GPUs Need New Memory Safety Solution

[1] Guo, Yanan, Zhenkai Zhang, and Jun Yang. "GPU Memory Exploitation for Fun and Profit." In 33rd USENIX Security Symposium

5

Per-kernel Solution: Pointer Tagging Method

• Buffer ID to identify the memory chunk.

• Buffer Base Address to specify the starting address of the buffer.

• Buffer Size to store the size to determine the end address.

• Utilize unused upper bits in pointer as a tag(= Buffer ID) storage.6

Buf. ID

IDA

…

Base Address

0x8000…0100
…

Size

256
…

Bounds Table

__host__ int main ()
{
 A = cudaMalloc(256);
 …
}
__device__ int kernel(*A)
{
 A[index]= 0x10;
 }

Bounds
checking!

Memory
object

Memory
object

Ptr1ID

Bounds
Table

Memory

Issues in Per-thread Pointer Tagging Method

Buf. ID Base Address

ID0 0x8000…0100

Size

256

Bounds Table

Memory
object

Ptr1ID

Bounds
Table

Thread 0 Kernel

Ptr1IDThread 1 ID1 0x8000…0200 256

……

Ptr1IDThread 2 ID2 0x8000…0300 256

Ptr1IDThread 3 ID3 0x8000…0400 256

Ptr1IDThread 4 ID4 0x8000…0500 256

Ptr1IDThread 5 ID5 0x8000…0600 256

Ptr1IDThread 6 ID6 0x8000…0700 256

Ptr1IDThread 31 ID31 0x8000…2000 256

1. Too large

Bounds Table Size

2. Too many

Memory Access

3. Too many

bits for ID

Memory

7

• Immune to memory access issues.

• Verify the bounds per thread only with its size information instead of ID

(1) Let’s Remove Bounds Table.

Memory
object

Ptr1

Pointer Tagging

ID
Memory
object

Ptr1

New solution

Size

IDSize

Buf.
ID

Base
Address

Size

Bounds Table

Bounds
Table

8

There are (Still) Problems

Aligned Pointer
2) How to minimize

the size bits?
1) How can we check

bounds without BASE

address?

9

Memory
object

Memory
object

Ptr1IDSIZE

Need a New Approach: LMI

• We can remove BASE address.
• Keep base address information in address itself.

• Make the base address part unmodifiable.

• Check if it is modified or not.

• We can minimize the size bits.
• Store the extent part only.

• 32bit size can be represented within 5 bit.

(2) Let buffer be aligned to a power-of-two size

10

Memory Checking Without Base Address Info.

Buffer A

0x1000

0x2000

Ptr_A

Ptr_A = Malloc(0x1000)

Ptr_A += 0x900

Ptr_A -= 0x400

Ptr_A += 0x2000

0x1 0x000

12b52b

5b

Ptr_A

ModifiableUnmodifiable

0x1000

= 2^1212

0x9000x500

Size:

0x3

11

OUT

OF

BOUNDSExcessive bounds checking operation

might lead to performance overhead.

Feasibility of All-Time Bounds Checking

2) How to minimize

the size bits
1) How can we check

bounds without BASE

address?

3) How can we reduce

the checking overhead?

12

Memory
object

Memory
object

Ptr1IDSIZE

•Requires compiler support for instruction marking

Not all Arithmetic Operation are Address Operation.

Pointer
Non-

Pointer

Compiler Analysis

ADD I1, I2, I3
ADD P1, P1, 0x0
ADD P2, P2, -0x100

I: Integer

P: Pointer

13

AND

XOR

ALU

RAddr RVar

Result

E U M Var

E U M

E

Var

U'' M''

M
U

X

Zero
Check

FFF.. 0

U M

Mask
Gen.

Address Register Selection Mask Generation
Bit Change Detection

Overflow
detection in
masked bits

Sync

A

Control signals
from instruction

E
E''

S

 ~((1 << (+ Offset –)E

U' M'E'

If !(ZERO),
OoB Error!

S

AA

• Utilizing marking bits in the instruction set for static-time analysis.

• Hardware checking unit to operate within a single cycle.

Low Overhead Overflow Checking Unit (OCU)

E

A U

M
: Activation

: Extent

: Unmodifiable
: Modifiable
: Optional

S : Selection

Instruction
Control

063

RSVD Inst.A S

14

1. Lower fragmentation overhead from power-of-two alignment.
• Fragmentation is a critical issue in CPU programs.

• Fortunately, the GPU fragmentation is low enough (19.7%)

• This is a key trait of GPU programs, which mostly align data sizes to powers of
two.

GPUs: More Room to Maneuver Than CPUs

15

L
o

w
e
r

is
 b

e
tt

e
r

)

1. Lower fragmentation overhead from power-of-two alignment.
• Fragmentation is a critical issue in CPU programs.

• Fortunately, the GPU fragmentation is low enough (19.7%)

• This is a key trait of GPU programs, which mostly align data sizes to powers of
two.

2. Simpler memory operation
1. (Almost) no immediate number assign to pointers

2. (Almost) no pointer load/store

GPUs: More Room to Maneuver Than CPUs

16

•Compiler and Runtime Library Support.

•Hardware Implementation on Vortex Project[1] and
Power/Area Analysis.

• Temporal Safety.

More In Our Paper!

17

[1] Tine, Blaise, Krishna Praveen Yalamarthy, Fares Elsabbagh, and Kim Hyesoon. "Vortex:

Extending the RISC-V ISA for GPGPU and 3D-graphics." In MICRO-54

1. Compiler Analysis

2. Runtime library support

3. Hardware Overflow Checking Unit (OCU)

LMI Recap

Pointer=

__global__ void kernel (...)
{

a = 0x1 + p[0];
p = p + 4;

 *p++;
...

}

AND

XOR

ALU

RAddr RVar

Result

E U M Var

E U M

E

Var

U'' M''
M

U
X

Zero
Check

E

A U

M
: Activation

: Extent

: Unmodifiable
: Modifiable

FFF.. 0

U M

Mask
Gen.

Address Register Selection Mask Generation
Bit Change Detection

Overflow
detection in
masked bits

Sync

Instruction
Control

063

RSVD Inst.

128b Instruction format*
with Reserved Bits

A

Control signals
from instruction

Kernel Code

Assign Extent to the Ptr.
pointing aligned Mem.

cudaMalloc(),
malloc(), alloc()

E U M

Runtime Lib.

(2) Mark

3. Hardware Overflow Checking2. Runtime Library1. Compiler Analysis

(1
)

Sc
an

Mark Instructions
Handling Ptr

E
E''

S

 ~((1 << (+ Offset –)E

U' M'E'

If !(ZERO),
OoB Error!

S
A S

: Optional
S : Selection

AA

2. Runtime

Library

3. Hardware Overflow Checking
1. Compiler

Analysis

18

Evaluation Method

•Simulation Environment.
•Macsim[1] Simulator.

•With trace generated with NVBit.

•Target Benchmarks
•HPC , ML, LLM, and ADAS applications

[1] Kim, Hyesoon, Jaekyu Lee, Nagesh B. Lakshminarayana, Jaewoong Sim, Jieun Lim, and Tri Pho.

"Macsim: A cpu-gpu heterogeneous simulation framework user guide." Georgia Institute of

Technology (2012): 1-57.
19

Evaluation for HW/Compiler solutions

• LMI Shows the better performance with wider security
coverage on various benchmarks.

Rodina Tango

Fast

Transformer ADAS

L
o

w
e
r

is
 b

e
tt

e
r

Compiler

solution

Previous

Hardware

Solution20

• Proposes an efficient bounds-checking solution with in-
pointer meta-data for fine-grained GPU memory safety.

• Through employing power-of-two-sized buffer allocation,
• Minimized the metadata so that it can be embedded into pointers

• Extremely low bounds checking overhead

• Enable to implement correct-by-construction concept, so that LMI guarantee
the integrity of pointer from pointer creation to pointer deallocation.

Conclusion

21

THANK YOU!!

Questions?

	Slide 1: Let-Me-In: (Still) Employing In-pointer Bounds Metadata for Fine-grained GPU Memory Safety
	Slide 2: Memory Safety
	Slide 3: Memory Safety
	Slide 4: Arise of The Concern on GPU Security
	Slide 5: Now GPUs Need New Memory Safety Solution
	Slide 6: Per-kernel Solution: Pointer Tagging Method
	Slide 7: Issues in Per-thread Pointer Tagging Method
	Slide 8: (1) Let’s Remove Bounds Table.
	Slide 9: There are (Still) Problems
	Slide 10: (2) Let buffer be aligned to a power-of-two size
	Slide 11: Memory Checking Without Base Address Info.
	Slide 12: Feasibility of All-Time Bounds Checking
	Slide 13: Not all Arithmetic Operation are Address Operation.
	Slide 14: Low Overhead Overflow Checking Unit (OCU)
	Slide 15: GPUs: More Room to Maneuver Than CPUs
	Slide 16: GPUs: More Room to Maneuver Than CPUs
	Slide 17: More In Our Paper!
	Slide 18: LMI Recap
	Slide 19: Evaluation Method
	Slide 20: Evaluation for HW/Compiler solutions
	Slide 21: Conclusion
	Slide 22: THANK YOU!! Questions?

