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• Provide a protection against the unauthorized memory 
access which leads to system vulnerability.

• Ex.1) Buffer overflow. 
• e.g. Stack smashing attack

Memory Safety

Buffer A Buffer BBUFFER OVERFLOW

A B

Allocate adjacent buffers A and B.

Trigger the buffer overflow on buffer A.

Read on B will obtain the incorrect value. 
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• Ex.2) Dangling Pointers.

Memory Safety

Never Allocated

Once allocated but freed

Allocated but not initialized

Dangling

Pointer



Arise of The Concern on GPU Security
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•  Previous studies focused on per-kernel memory safety 
solution.
• Memory safety on buffers allocated by host, accessed by 

threads

•Not sufficient for recent attacks
• e.g. Stack-smashing attacks on GPUs[1]. 

•Need a per-thread memory safety solution.
• Protection on memory chunks allocated and used by each 

thread at RUNTIME

Now GPUs Need New Memory Safety Solution

[1] Guo, Yanan, Zhenkai Zhang, and Jun Yang. "GPU Memory Exploitation for Fun and Profit." In 33rd USENIX Security Symposium
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Per-kernel Solution: Pointer Tagging Method

• Buffer ID to identify the memory chunk.

• Buffer Base Address to specify the starting address of the buffer.

• Buffer Size to store the size to determine the end address.

• Utilize unused upper bits in pointer as a tag(= Buffer ID) storage.6

Buf. ID

IDA

…

Base Address

0x8000…0100
…

Size

256
…

Bounds Table

__host__ int main () 
{
   A = cudaMalloc(256);
  … 
}
__device__ int kernel(*A)
{
   A[index]= 0x10;
 }  

Bounds 
checking!

Memory
object

Memory
object

Ptr1ID

Bounds
Table

Memory



Issues in Per-thread Pointer Tagging Method 

Buf. ID Base Address

ID0 0x8000…0100

Size

256

Bounds Table

Memory
object

Ptr1ID

Bounds
Table

Thread 0 Kernel

Ptr1IDThread 1 ID1 0x8000…0200 256

……

Ptr1IDThread 2 ID2 0x8000…0300 256

Ptr1IDThread 3 ID3 0x8000…0400 256

Ptr1IDThread 4 ID4 0x8000…0500 256

Ptr1IDThread 5 ID5 0x8000…0600 256

Ptr1IDThread 6 ID6 0x8000…0700 256

Ptr1IDThread 31 ID31 0x8000…2000 256

1. Too large 

Bounds Table Size

2. Too many 

Memory Access

3. Too many 

bits for ID

Memory
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• Immune to memory access issues.

• Verify the bounds per thread only with its size information instead of ID

(1) Let’s Remove Bounds Table.

Memory
object

Ptr1

Pointer Tagging

ID
Memory
object

Ptr1

New solution

Size

IDSize

Buf. 
ID

Base 
Address

Size

Bounds Table

Bounds
Table
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There are (Still) Problems

Aligned Pointer
2) How to minimize 

the size bits?
1) How can we check 

bounds without BASE 

address?
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Need  a New Approach: LMI



•  We can remove BASE address.
• Keep base address information in address itself.

• Make the base address part unmodifiable.

• Check if it is modified or not.

•  We can minimize the size bits.
• Store the extent part only.

• 32bit size can be represented within 5 bit.

(2) Let buffer be aligned to a power-of-two size
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Memory Checking Without Base Address Info.

Buffer A

0x1000

0x2000

Ptr_A

Ptr_A  = Malloc(0x1000)

Ptr_A += 0x900

Ptr_A -= 0x400

Ptr_A += 0x2000

0x1 0x000

12b52b

5b

Ptr_A 

ModifiableUnmodifiable

0x1000

= 2^1212

0x9000x500

Size:

0x3
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might lead to performance overhead.



Feasibility of All-Time Bounds Checking

2) How to minimize 

the size bits
1) How can we check 

bounds without BASE 

address?

3) How can we reduce 

the checking overhead?
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•Requires compiler support for instruction marking

Not all Arithmetic Operation are Address Operation.

Pointer
Non-

Pointer

Compiler Analysis

ADD I1, I2, I3 
ADD P1, P1,      0x0 
ADD P2, P2, -0x100 

I:  Integer

P: Pointer
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AND

XOR

ALU

RAddr RVar

Result

E U M Var

E U M
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Var
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Check

FFF.. 0

U M

Mask
Gen.

Address Register Selection Mask Generation
Bit Change Detection

Overflow 
detection in 
masked bits

Sync

A

Control signals 
from instruction

E
E''

S

 ~((1 << (       + Offset   –  )E

U' M'E'

If !(ZERO),
OoB Error!

S

AA

• Utilizing marking bits in the instruction set for static-time analysis.

• Hardware checking unit to operate within a single cycle.

Low Overhead Overflow Checking Unit (OCU)
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Instruction
Control

063

RSVD Inst.A S
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1. Lower fragmentation overhead from power-of-two alignment.
• Fragmentation is a critical issue in CPU programs.

• Fortunately, the GPU fragmentation is low enough (19.7%)

• This is a key trait of GPU programs, which mostly align data sizes to powers of 
two.

GPUs: More Room to Maneuver Than CPUs
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1. Lower fragmentation overhead from power-of-two alignment.
• Fragmentation is a critical issue in CPU programs.

• Fortunately, the GPU fragmentation is low enough (19.7%)

• This is a key trait of GPU programs, which mostly align data sizes to powers of 
two.

2. Simpler memory operation
1. (Almost) no immediate number assign to pointers

2. (Almost) no pointer load/store

GPUs: More Room to Maneuver Than CPUs
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•Compiler and Runtime Library Support.

•Hardware Implementation on Vortex Project[1] and 
Power/Area Analysis.

• Temporal Safety.

More In Our Paper!
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[1] Tine, Blaise, Krishna Praveen Yalamarthy, Fares Elsabbagh, and Kim Hyesoon. "Vortex: 

Extending the RISC-V ISA for GPGPU and 3D-graphics." In MICRO-54



1. Compiler Analysis

2. Runtime library support

3. Hardware Overflow Checking Unit (OCU)

LMI Recap

Pointer=

__global__ void kernel (...)
{

a = 0x1 + p[0]; 
p = p + 4;

           *p++;
...

}

AND

XOR

ALU
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Result

E U M Var
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128b Instruction format* 
with Reserved Bits

A

Control signals 
from instruction

Kernel Code

Assign Extent to the Ptr.
pointing aligned Mem.

cudaMalloc(),
malloc(), alloc()

E U M

Runtime Lib.

(2) Mark

3. Hardware Overflow Checking2. Runtime Library1. Compiler Analysis

(1
) 
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2. Runtime 

Library

3. Hardware Overflow Checking
1. Compiler 

Analysis
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Evaluation Method

•Simulation Environment.
•Macsim[1] Simulator. 

•With trace generated with NVBit.

•Target Benchmarks
•HPC , ML, LLM, and ADAS applications

[1] Kim, Hyesoon, Jaekyu Lee, Nagesh B. Lakshminarayana, Jaewoong Sim, Jieun Lim, and Tri Pho. 

"Macsim: A cpu-gpu heterogeneous simulation framework user guide." Georgia Institute of 

Technology (2012): 1-57.
19



Evaluation for HW/Compiler solutions

• LMI Shows the better performance with wider security 
coverage on various benchmarks.

Rodina Tango

Fast

Transformer ADAS

L
o

w
e
r 

is
 b

e
tt

e
r

Compiler 

solution

Previous

Hardware 

Solution20



• Proposes an efficient bounds-checking solution with in-
pointer meta-data for fine-grained GPU memory safety. 

• Through employing power-of-two-sized buffer allocation,
• Minimized the metadata so that it can be embedded into pointers

• Extremely low bounds checking overhead

• Enable to implement correct-by-construction concept, so that LMI guarantee 
the integrity of pointer from pointer creation to pointer deallocation.

Conclusion
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THANK YOU!!

Questions?
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