
2025 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

Let-Me-In: (Still) Employing In-pointer Bounds
Metadata for Fine-grained GPU Memory Safety

Jaewon Lee†, Euijun Chung†, Saurabh Singh†, Seonjin Na†, Yonghae Kim‡, Jaekyu Lee§, and Hyesoon Kim†

Georgia Institute of Technology†, Arm‡, Intel§

{jaewon.lee, euijun, saurabh.s, seonjin.na}@gatech.edu, yonghae.kim@intel.com, jaekyu.lee@arm.com,
hyesoon@cc.gatech.edu

Abstract—The importance of ensuring the robustness of GPU
systems has grown significantly, especially as GPUs have become
vital in critical decision-making systems such as autonomous
driving and medical diagnostics. However, GPU programming
languages, primarily based on C/C++, inherit memory vulner-
abilities that threaten the robustness of GPU applications. The
heterogeneous GPU memory hierarchy makes it more difficult
to find effective universal solutions. While several studies have
proposed advanced GPU memory safety mechanisms, they still
grapple with significant challenges, including substantial meta-
data storage and access overhead, elevated hardware implemen-
tation costs, and limited security coverage, particularly regarding
fine-grained memory safety.

We address this issue with Let-Me-In (LMI), a fine-grained
memory safety mechanism specifically designed for GPUs. LMI
features an efficient hardware bounds-checking mechanism that
ensures negligible impact on performance and hardware costs,
even in scenarios where thousands of concurrent threads perform
memory operations across buffers in heap and local memory. This
is achieved by aligning memory allocation to powers of two and
performing static analysis to identify and mark pointer arithmetic
instructions. This approach also enables storing metadata inside
the unused upper bits of pointers, which are shrinking due
to the expansion of the virtual memory address space. The
unique characteristics of GPU programs make this approach
feasible, unlike in CPU programs, where the inherent complexity
of programs poses challenges. Our evaluation shows that LMI
incurs only negligible hardware and performance overhead,
making it a practical and efficient solution for enhancing GPU
memory safety.

I. INTRODUCTION

Graphics Processing Units (GPUs) have revolutionized the
computing landscape, enabling the processing of large datasets
at unprecedented speeds by leveraging their massively parallel
architecture. With the recent surge in deep learning applica-
tions, GPUs are increasingly being employed in life-critical
decision-making processes, such as autonomous driving [25]
and medical diagnostics [18]. GPU applications are com-
monly developed using GPU programming languages such
as CUDA [45], HIP [1], OpenCL [30], and OpenACC [49],
which adhere to the C/C++ standard to maintain a familiar
development environment. However, these languages inherit
one of C/C++’s most critical issues: memory vulnerabilities.
Previous studies [21], [51] have shown that exploiting such
vulnerabilities can compromise GPU applications, potentially
disrupting the functionality of deep learning systems running
on cloud servers.

Memory safety has been a critical issue in the CPU domain
for over half a century [6]. These vulnerabilities can enable at-
tacks that escalate privileges to superuser levels, expose private
information, or even hijack entire systems [9]. To address these
threats, extensive research has focused on diverse solutions,
including memory-safe programming languages [28], [37],
analysis tools [43], [54], and compiler-based memory safety
mechanisms [4], [13], [39].

Applying CPU-based memory safety solutions to GPUs,
however, is challenging due to the unique GPU architecture.
First, unlike GPU global memory, heap and local memory are
individually allocated and accessed by thousands of concur-
rently running threads, which imposes significant overhead for
buffer management. Second, GPUs have a distinct memory
hierarchy—including global, heap, shared, and local mem-
ory—each requiring specialized allocation mechanisms.

Recent research has introduced various GPU memory safety
mechanisms, but these solutions often provide limited pro-
tection or incur substantial performance and hardware over-
head. For instance, GPUShield [35] utilizes unused upper bits
in pointers to store tags for buffers passed through kernel
arguments. However, adopting 5-level memory paging [24]
reduces the availability of these unused bits, and GPUShield’s
treatment of heap and local memory (stack) as a single entity
leaves them vulnerable to heap or stack overflow attacks.
IMT [57] employs ECC values as memory tags to avoid
additional memory overhead, but this feature is unavailable
on most consumer-level GPUs, which typically lack default
ECC support. Similarly, cuCatch [58] reduces bounds meta-
data access overhead through compiler optimizations but still
imposes a 20% performance overhead, posing a significant
obstacle to practical adoption in real-world applications.

To address these challenges, we propose LMI, a prag-
matic hardware bounds-checking mechanism that embeds in-
pointer bounds metadata by leveraging 2n-aligned pointers.
Whereas pointer alignment is a popular technique [5], [22],
[36] for efficient memory safety mechanisms, its adoption in
real systems has been limited due to substantial performance
degradation, hardware overhead, and memory overhead caused
by fragmentation. In GPU programming models, however,
the impact of pointer alignment becomes negligible because
1) GPU programming predominantly relies on index-based
memory accesses, rather than complex pointer chasing, to
harness massive thread-level parallelism, and 2) GPU memory

1648

2025 IEEE International Symposium on High Performance Computer Architecture (HPCA)

2378-203X/25/$31.00 ©2025 IEEE
DOI 10.1109/HPCA61900.2025.00122

buffers are naturally aligned to 2n sizes, enabling efficient
warp-level execution. Building on the Baggy Bounds Checking
method [5], LMI significantly enhances performance and cov-
erage by integrating tailored hardware and software support.
LMI provides a hardware bounds-checking unit tailored for
2n-aligned pointers working with hint bits in instructions.
Compiler support is also essential to 1) inject code to allocate
aligned memory in the local stack memory and 2) annotate
instructions that necessitate bounds checks at runtime. The
runtime memory allocator is also redesigned to oversee aligned
buffer allocation and deallocation.

The contributions of our paper are as follows:
• LMI efficiently supports fine-grained GPU memory safety

by leveraging in-pointer size information. This is enabled
by power-of-two-aligned memory allocation.

• LMI examines the aligned-pointer memory safety mecha-
nism and demonstrates that the memory fragmentation prob-
lem is negligible in GPUs due to the unique characteristics
of GPU programming models.

• To eliminate the need to store bounds information in mem-
ory, LMI validates pointers during every pointer operation.
Following a Correct-by-Construction approach guarantees
pointer validity throughout the entire lifecycle, from pointer
generation to pointer destruction.

II. BACKGROUND & RELATED WORK

A. Heterogeneous GPU Memory System

GPUs are designed as highly parallel processing architec-
tures to handle computationally intensive tasks efficiently. To
achieve optimal performance, they utilize a multi-level mem-
ory hierarchy comprising global memory, shared memory, and
local memory. (Registers, constant memory, texture memory,
and surface memory are excluded from this discussion as they
are irrelevant attack targets.) This hierarchical structure allows
GPUs to access frequently used data with minimal latency
while optimizing memory usage.

Global memory, the largest and primary memory resource,
is shared across threads and kernels. Global memory has high
access latency, making it less suitable for frequent access.
Shared memory, accessible to threads in the same thread block,
offers latency comparable to L1 cache, enabling rapid data
retrieval and intra-block communication. Local memory, used
for thread-specific variables and buffers, resides in DRAM
alongside global memory but is separated at the thread level.

Since global memory can be accessed by any thread in the
GPU, buffers in global memory are particularly vulnerable
to exploitation, making global memory the primary focus of
previous memory safety mechanisms [35], [57], [58]. In con-
trast, heap and local memory (stack) are allocated separately
for each thread, meaning a single malloc() or alloc()
call in the kernel can simultaneously create buffers for all
active threads. Interestingly, while threads share the same local
memory address space for their variables and buffers, GPU
address translation maps these addresses to distinct physical
memory locations, ensuring isolation between thread-specific

memory regions. However, recent research [21] demonstrates
that this address translation mechanism can be bypassed,
enabling unauthorized access to local memory regions by other
threads. This underscores the urgent need for robust local
memory protection mechanisms.

B. Memory Safety

Memory vulnerabilities pose a significant threat to system
security, potentially compromising system integrity. Exploits
can circumvent a program’s intended control flow, enabling re-
mote arbitrary code execution [9], [52] or privilege escalation.
These vulnerabilities often arise from improper management
of memory operations, including allocation, access, and deal-
location. We categorize prior approaches to memory safety
based on their methods and the specific stages of the pointer
life cycle they address, as summarized in Table I.

TABLE I: Pointer life cycle and activated mechanisms.
Pointer Life Cycle Method/Technique
Pointer Generation All
Pointer Update Pointer Aligning [5], Pointer Tracking [55]

Pointer Dereferencing
Pointer Tagging [32], [48], [58], [64],
Memory Tagging [7], [57],
Tripwires [53], [56]

Pointer Destruction Canary [14], [17]

Table II provides a comparison of various software- and
hardware-based memory safety solutions. Software-based so-
lutions are relatively inexpensive to implement but often incur
significant performance overhead, making them unsuitable for
real-time applications. Hardware-based solutions, in contrast,
offer minimal performance impact and operate independently
of software intervention. However, they typically require ad-
ditional components, such as specialized logic or dedicated
memory (e.g., caches or tightly coupled memory) to store
security-related metadata. This added complexity increases
hardware costs and verification time. LMI is a hardware-based
solution designed to minimize implementation complexity by
leveraging the unique characteristics of GPU programming.

C. CPU Memory Safety Solutions

Canary and Tripwires: These mechanisms allocate special
memory regions around target objects to protect against mali-
cious accesses. The canary method verifies the integrity of
these regions, referred to as canaries, either at the end of
program execution or periodically. In contrast, Tripwire detects
unauthorized accesses in real time. While these methods intro-
duce minimal performance overhead, their security coverage
is limited, as they cannot detect non-adjacent accesses that
bypass Canary/Tripwire regions. Califorms [53] achieves intra-
object protection with minimal memory overhead by utilizing
padding bytes for alignment. REST [56] further improves
protection by integrating random tokens and cache-embedded
token detectors to identify unauthorized accesses.
Bounds-checking: These mechanisms involve storing bounds
information for allocated buffers and performing validity
checks upon accesses. Intel MPX [48] associates bounds in-
formation with pointers and enforces bounds-checking during

1649

TABLE II: Comparison of the security coverage of LMI with previous GPU memory safety mechanisms. Detailed test cases are explained
in Table III.

Name Target Base Mechanism Spatial Safety Temporal
Safety

Metadata
Access

Perf.
OverheadGlobal Shared Stack Heap

Baggy Bounds [5] CPU SW Pointer Aligning # Noa 72%b

No-Fat [22] CPU HW Pointer Aligning # G# Yes 8%
C3 [36] CPU HW Pointer Encryption # No 0.01%c

clArmor [17] GPU SW Canary G# # # # # No x1.48
GMOD [14] GPU SW Canary G# # # # # No x3.06
Compute Sanitizer [44] GPU SW Tripwires G# G# G# G# G# Yes x72.29
GPUShield [35] GPU HW Pointer Tagging #d G# G# # Yes 0.8%
cuCatch [58] GPU SW Pointer Tagging G# # G# Yes 19%
IMT [57] GPU HW Memory Tagging #d # # G# Yes 2.69%
LMI GPU HW Pointer Aligning G#e No 0.2%

a Only for 64-bit; 32-bit versions require memory accesses. b SPEC CPU2000. c Large hardware overhead due to a key stream generator per processor.
d Not explicitly mentioned in the paper. e Further temporal safety can be provided by pointer tracking (§XII-C).

memory accesses. However, it incurs significant performance
penalties due to the propagation of bounds and multi-level
bounds addressing.

Several studies [12], [38], [63]–[65] adopt hardware-assisted
fat pointers, whereby pointers hold bounds and permission
metadata. CHERI’s use of 128-bit fat pointers requires changes
in memory usage and binary structure. This approach exacer-
bates register pressure in GPUs, which rely on large register
files to support thousands of parallel threads. Alternatively,
HardBound [12] and Watchdog [38] store pointer metadata
in shadow memory that mirrors allocated memory pages and
stores metadata in locations mapped to pointer addresses.

CHEx86 [55] provides runtime memory safety with full bi-
nary compatibility. CHEx86 generates bounds-checking µops
from macro-ops without modifying any source code. The
bounds metadata is acquired from the OS symbol table. Fur-
thermore, it tracks all operand registers to identify their buffer
IDs and validates the pointers with buffer metadata when the
registers are used for load/store instructions. This mechanism
relies on rulebook-based register propagation, which requires
regular updates whenever the ISA is changed.
Memory Tagging: Memory tagging mechanisms embed tags
into pointers and perform tag validations whenever a pointer is
dereferenced. Memory access is granted only if the pointer’s
tag matches the tag of the memory region being accessed.
ARM’s Memory Tagging Extension (MTE) [7] embeds a 4-bit
tag within a pointer and links it to the corresponding memory
region. While memory tagging approaches [7], [50] incur
minimal performance overhead, the small tag size restricts se-
curity coverage because of a high likelihood of false positives.
Increasing the number of tag bits can enhance security but
demands extensions to relevant hardware components, such as
the tag cache, tag checker, and cache metadata.
Pointer Tagging: These mechanisms [23], [32], [67] embed a
pointer tag within the unused upper bits of pointers, enabling
the retrieval of object metadata from memory using the tag.
AOS [32] utilizes Arm Pointer Authentication Code (PAC) as
unique keys to locate bounds information in memory, thereby
eliminating the need for register extension and shadow mem-
ory. These keys index a bounds table in memory, and microar-

chitectural enhancements are introduced to obviate the need
for explicit bounds-checking instructions. In-fat pointer [67]
stores object metadata alongside in-memory-type metadata,
ensuring protection at the subobject granularity.
Pointer Alignment: Baggy Bounds Checking [5] allocates 2n-
aligned memory buffers. This arrangement encodes memory
region boundaries directly within address pointers, enabling
simple pointer arithmetic to determine valid memory ranges.
However, this approach leads to memory fragmentation in
CPU applications, resulting in significant unused memory.
NoFAT [22] leverages aligned memory allocation up to a
4KB page size. It employs a Memory Allocation Size Table
(MAST) to track allocation sizes, which generates additional
memory traffic for metadata access. C3 [36] proposes a
stateless memory-safety technique that utilizes a radix-aligned
pointer encoding scheme. C3 eliminates the need to access
bounds metadata, but implementing a fully secure key stream
generator poses hardware cost and verification challenges.

D. GPU Memory Safety Solutions

Earlier software-based GPU solutions [14], [17], [44] suffer
from substantial performance overhead or limited security cov-
erage. clARMOR [17] and GMOD [14] leverage lightweight
canary mechanisms, detecting buffer overflows only when they
access adjacent memory areas. NVIDIA’s Compute Sanitizer
detects memory safety violations by leveraging a tripwire
mechanism. However, since Compute Sanitizer relies on bi-
nary instrumentation, it introduces significant performance
overhead. Comparing previous proposals, cuCatch [58] offers
better security coverage with lower performance overhead.
It utilizes shadow-tagged memory to track memory objects
and performs optimized bounds checking at the compiler
level. However, it still incurs a 19% performance overhead.
Additionally, cuCatch does not protect kernel heap memory.

Recently, hardware-based mechanisms have been proposed
based on pointer tagging [35] or memory tagging [57] to
overcome the performance overhead of software-only mech-
anisms. GPUShield [35] utilizes a hardware-based pointer
tagging mechanism on GPU systems. It achieves negligible
performance overhead due to its hardware bounds-checking

1650

approach. However, it offers limited fine-grained memory pro-
tection for buffers in the heap and local (stack) memory, and
it does not support temporal safety. As observed in Figure 1,
while some workloads, such as bert and decoding, primarily
access global memory, others, like lud cuda and needle,
rely heavily on shared memory, accounting for over 80% of
total memory accesses. Since GPUShield provides memory
protection only for the global memory region, these profiling
results underscore its limited coverage. IMT [57] addresses
these limitations by providing fine-grained protection without
incurring additional storage or memory bandwidth overhead,
leveraging ECC redundancy. However, this approach is limited
to high-end GPUs, as most commercially available GPUs lack
ECC support.

ba
ckp
rop bfs
dw
t2d

ga
uss
ian

ho
tsp
ot

lav
aM
D

lud
_cu
da
ne
ed
le nn

pa
rtic
lefi
lter
_flo
at

pa
rtic
lefi
lter
_n
aiv
e

pa
thf
ind
er

sc_
gp
u

sra
d_
v1

sra
d_
v2be

rt

de
cod
ingsw

in

we
ne
t_d
eco
de
r

we
ne
t_e
nco
de
r

Ale
xN
et

Cif
arN
et
GR
U
LS
TM
Re
sN
et

Sq
ue
eze
Ne
t
avg

0.0
0.2
0.4
0.6
0.8
1.0

R
at
io

LDG STG LDS STS LDL STL

Fig. 1: Ratio of memory instructions per region in GPU workloads.
The target memory region for each load/store instruction is catego-
rized as follows: LDG/STG for global memory, LDS/STS for shared
memory, and LDL/STL for local memory.

III. THREAT MODEL

Our threat model aligns with prior research on GPU memory
security. We assume that an attacker is aware of vulnerabilities
in the target program and leverages malicious inputs to gain
unrestricted memory read/write access. This access can be
exploited to steal, corrupt, or modify user data, disrupt control
flow, or produce incorrect outputs within the same cloud
server [51]. We further assume that the attacker cannot alter the
binary image, as doing so would already provide the elevated
privileges typically sought through buffer overflow attacks.
GPU side-channel attacks, such as covert channels [15], [16]
and power side-channels [26], [41], are beyond the scope of
this work.

IV. LMI ARCHITECTURE

Figure 2 presents an overview of LMI. To achieve scal-
able and stateless fine-grained memory safety, LMI performs
bounds checking only with size information embedded in the
pointer’s upper bits by utilizing 2n-aligned memory allocation.

A. Benefits of Power-of-Two Aligned Memory

The bounds-checking mechanism typically relies on three
key components: 1) the base address of the buffer, 2) the buffer
size, and 3) the buffer ID used to locate the corresponding

buffer metadata. We observed that 2n-aligned memory allo-
cation enables the bounds-checking operation to work using
only size information for the following reasons.

1) Easy Base Address Retrieval: With 2n-aligned memory
allocation, the base address is always aligned to the buffer size.
This alignment ensures that, regardless of how many pointer
arithmetic operations have been performed, the base address
of the buffer referred to by the pointer can be calculated using
the pointer value and the size information. For example, if
a pointer has the value 0x12345678 and the buffer size is
256B, the base address of the buffer is 0x12345600. Even if
the pointer value is updated to 0x123456FF, the base address
remains consistently 0x12345600.

2) Enabling Program-Wide Pointer Verification: When a
pointer value is updated to an out-of-bounds address, such
as 0x12345700 in the previous example, the base address
retrieved from the pointer becomes incorrect. To address
this issue, LMI adopts the Correct-by-Construction principle.
This principle, inspired by the concept of designing systems
or software for inherent correctness and defect prevention,
emphasizes ensuring correctness through design rather than
relying solely on post-development testing and debugging.
LMI ensures pointer validity during pointer generation and
performs verification on every pointer arithmetic instruction
(e.g., IADD, IMOV). By doing so, it establishes that pointers
remain structurally correct for subsequent accesses. The use of
2n-aligned memory allocation significantly simplifies bounds-
checking operations, enabling program-wide pointer verifica-
tion with minimal performance overhead. In Section VII, we
will discuss how LMI efficiently implements this approach by
leveraging 2n-aligned pointers.

3) Compact Size Encoding: To eliminate the need for
accessing in-memory metadata, LMI leverages unused upper
bits in pointers to store size information. However, these
upper bits have become limited due to architectural changes in
CPUs and GPUs (§IV-B2). By employing 2n-aligned memory
allocation, buffer sizes can be represented solely by their extent
values in a power-of-two exponential form. To save bits for
size representation, we use an encoding scheme where the
minimum alignment size (256 = 28) is encoded as 1, and
the maximum size of 256 GiB (238) is encoded as the extent
value 31. Additionally, the buffer size is constrained by system
memory limits or device-specific restrictions, such as those
set using cudaDeviceSetLimit(). These constraints prevent
users from assigning unrealistically large buffer sizes (e.g., 128
GiB or 256 GiB) to extent values. Extent values that exceed
practical buffer sizes can be repurposed to encode debugging
information, such as error types (e.g., spatial or temporal safety
violations).

4) No Buffer ID: Bounds-checking can now be performed
without accessing memory, thanks to the use of 2n-aligned
pointers. Therefore, buffer IDs, which were previously used
as keys to search metadata in memory, are no longer required.

1651

Pointer=

__global__ void kernel (...)
{

a = 0x1 + p[0];
p = p + 4;

 *p++;
...

}

__global__ void kernel (...)
{

a = 0x1 + p[0];
p = p + 4;

 *p++;
...

}

AND

XOR

ALU

RAddr RVar

Result

E U M Var

E U M

E

Var

U'' M''

M
U

X

Zero
Check

E

A U

M
: Activation

: Extent

: Unmodifiable
: Modifiable

FFF.. 0

U M

Mask
Gen.

Address Register Selection Mask Generation
Bit Change Detection

Overflow
detection in
masked bits

Syn
c

Instruction
Control

063

RSVD Inst.

128b Instruction
format with
Reserved Bits

A

Control signals

Kernel Code

Assign Extent to the Ptr.
pointing aligned Mem.

cudaMalloc(),
malloc(), alloc()

E U M

Runtime Lib.

3. Hardware Overflow Checking2. Runtime Library1. Compiler Analysis
(1

)
Sc

an

Mark Instructions
Handling Ptr

E
E''

S

U' M'E'

If !(ZERO),
OoB Error!

S
A S

: Optional
S : Selection

A

Error
Clear?E

(For Delayed Termination)

(2) Mark

 ~((1 << (+ Offset)) – 1)E ~((1 << (+ Offset)) – 1)E

AND

Fig. 2: LMI Architecture Overview.

B. Design Decisions Behind LMI
The main objective of LMI is to provide practical and

fine-grained GPU memory safety in scenarios where nu-
merous threads operate in parallel, continuously allocating
and deallocating substantial volumes of memory. Achieving
this objective requires careful consideration of the following
aspects:

1) Performance Impact of Bounds Metadata Access: To
support fine-grained memory safety, minimizing or eliminat-
ing memory accesses for retrieving bounds information is
critical for performance. Unlike host-side memory allocation
functions such as cudaMalloc(), device-side malloc()
or alloc() are invoked concurrently by numerous threads.
This concurrency can result in significant additional mem-
ory accesses for bounds information retrieval. Prior Roofline
analyses of GPU applications [61] highlight that memory
bandwidth often serves as the primary performance bottleneck.
Consequently, these extra memory accesses for bounds meta-
data retrieval can lead to substantial performance slowdowns.

2) Squeezing Unused Upper Bits in Pointers: Previous
memory and pointer tagging solutions [7], [32], [35], [36] have
utilized unused upper bits in pointers to store memory object
identifiers. This approach offers a convenient mechanism to
propagate buffer IDs during pointer operations without ad-
ditional management overhead. However, the availability of
these upper bits has become constrained due to recent updates
in CPUs and GPUs, including:
• The introduction of the .unified attribute [46] in the

Hopper architecture, which enables a unified virtual memory
address space. This feature allows the host and other devices
in the system to directly reference variables.

• The expansion of virtual memory address space from 48 bits
to 57 bits [2], [24] in systems where CPUs share a unified
virtual memory address map with GPUs.

• The growing demand for large memory in GPU systems,
driven by memory-intensive applications such as Large
Language Models (LLMs). The shift towards multi-GPU

setups for enhanced performance [59] further amplifies the
memory requirements.
3) Increasing Hardware Verification Cost: In modern SoC

development, hardware verification accounts for a substantial
portion of the overall cost, especially at advanced process
nodes [19]. The integration of even small cache logic com-
ponents requires extensive verification of system IPs, in-
cluding the network-on-chip (NoC) and memory controllers,
significantly increasing verification expenses. Thanks to LMI’s
memory-independent and per-thread architecture, LMI min-
imizes its impact on the system and reduces verification
complexity.

C. Challenges in Adopting CPU Solutions for the GPU

1) Architectural Differences: Directly adopting CPU solu-
tions for GPUs incurs significant hardware costs and perfor-
mance overhead without considering the unique characteristics
of the GPU system. The GPU’s method of accessing memory
buffers differs from that of CPU code. CPU code frequently
stores to and loads from pointers, while the GPU accesses
arrays using base addresses and indices for the following
reasons:
Thread Divergence: Programs involving pointer chasing can
result in significant thread divergence, where threads within
a warp (or workgroup) take divergent branches, executing
different instructions. This thread divergence can lead to com-
putational serialization, undermining the efficiency of SIMT
execution on GPUs.
Memory Latency Hiding: GPUs are optimized to hide
memory access latency by concurrently executing computation
and memory access. However, pointer-chasing programs often
have unpredictable access patterns, complicating the effective
overlap of memory access and computation.

2) Workload Characteristics: Pointer-chasing programs
align more naturally with CPUs due to their flexible control
flow capabilities, which enable efficient handling of irregular
memory access patterns. GPUs, on the other hand, are better

1652

1 __device__ uint64_t func() {
2 int id = blockIdx.x * blockDim.x + threadIdx.x;
3 int* p = (int*)malloc(id * sizeof(int));
4 }

Fig. 3: Variable-size heap allocations by threads in the same warp.

suited for regular data-parallel workloads, such as matrix
operations, image processing, and simulations. This mismatch
makes pointer chasing less suitable for GPU architectures.

D. Limitations in Existing GPU Solutions

Heap and Stack Memory Protection: GPUShield [35] per-
forms region-based bounds checking, treating heap or stack
(local) memory as a single large memory chunk. While this
approach can detect buffer overflows across the entire heap or
stack, it fails to identify overflows within individual buffers
in a single kernel thread. Recent studies [21] show that
malicious inputs, even within the same thread, can cause
buffer overflows that alter the return address, enabling Return-
Oriented Programming (ROP) attacks [52]. This vulnerability
serves as the foundation for the Mind Control Attack [51].
Per-Thread Bounds Checking: Figure 3 illustrates that
threads within the same warp can allocate buffers of different
sizes. Consequently, applying warp-level bounds checking, as
GPUShield does, becomes challenging. Additionally, cuCatch
does not cover malloc() calls inside kernel code. In Sec-
tion V-B, we discuss how LMI addresses this limitation.

E. Rediscovering the Potential of Pointer Alignment for GPUs

Pointer alignment mechanisms, such as Baggy Bounds, have
straightforward implementations. However, they suffer from
memory fragmentation issues and limitations in supporting
pointer store/restore mechanisms. Consequently, most hard-
ware techniques rely on metadata to ensure memory safety.
Despite these challenges, we observed that LMI does not incur
significant memory overhead due to the characteristics of GPU
programs and frameworks for the following reasons.
Aligned GPU Buffers: GPU programs typically allocate
buffers aligned to 2n bytes to enable efficient memory access
and management during parallel execution. Figure 4 shows
memory fragmentation across the benchmarks listed in Ta-
ble V. To evaluate memory overhead due to fragmentation,
we measured the peak RSS (Resident Set Size) for both the
base and LMI cases, then calculated the relative increase
in the LMI case. The results indicate that hotspot and srad
exhibit negligible memory fragmentation, while backprop and
needle experience fragmentation overheads of 85.9% and
92.9%, respectively. This is due to their buffers consisting
of power-of-two-sized allocations with additional bytes for
header information. Nevertheless, the geometric mean memory
overhead remains relatively low at 18.73%.
Pre-existing Memory Fragmentation in Kernel malloc():
Similar to modern multi-threaded dynamic memory alloca-
tors [20], the CUDA kernel’s malloc() manages memory
layouts for efficient parallel memory allocation. As shown in
Figure 5, each thread can allocate memory in different buffer
groups, enabling multiple threads to concurrently manipulate

ba
ck

pr
op bf
s

dw
t2

d
eu

ler
3d

ga
us

sia
n

he
ar

tw
all

ho
tsp

ot
lav

aM
D

lud
_c

ud
a

ne
ed

le nn

pa
rti

cle
filt

er
_f

loa
t

pa
rti

cle
filt

er
_n

aiv
e

pa
th

fin
de

r
sc

_g
pu

sr
ad

_v
1

sr
ad

_v
2

be
rt

de
co

din
g

sw
in

we
ne

t_
de

co
de

r

we
ne

t_
en

co
de

r
Al

ex
Ne

t
Ci

fa
rN

et
GR

U
LS

TM
Re

sN
et

Sq
ue

ez
eN

et
gm

ea
n

0
20
40
60
80

100

M
em

. O
ve

rh
ea

d(
%

)

Fig. 4: Memory overhead caused by 2n-aligned memory buffers.

GH BH
Data
T=12

P
a

d

① Small Chunk: Buf. Size ≤ 1904 Byte

② Large Chunk: 1904B < Buf. Size ≤ 2192B

1920 Bytes

... BH
Data
T=53

P
a

d GH BH
Data
T=63

P
a

d ... BH
Data
T=142

P
a

d

GH

BH

: Buffer Group Header

: Buffer Header

GH BH Data Pad

16 80B x n 80B x n

2208 Bytes

1920 Bytes

BH Data Pad

2208 Bytes16

③ Larger Chunk: 2192B < Buf. Size

GH BH Data (2196B) Pad (2204B) BH Data

16 4416 (2208x2) Bytes 4416 B

...

...

GH BH

16

Data

2208 Bytes

16

Fig. 5: Demonstration of malloc() in a CUDA kernel. The kernel
malloc() allocates buffers with sizes aligned to specific numbers,
such as multiples of 80 bytes or 2208 bytes, introducing memory
fragmentation.

memory allocation headers. Buffers with smaller allocation
sizes share a common group header, which reduces mem-
ory overhead for headers. The malloc() function manages
buffers as multiples of a chunk unit, which varies based on
the allocation size. If the requested memory size is not aligned
with the chunk unit, it results in memory fragmentation of up
to 50%, as seen in LMI.

V. LMI ALLOCATION MECHANISM

A. Pointer Structure for LMI

In alignment with numerous prior studies [7], [35], [36],
LMI uses the upper bits of the pointer to store the size of the
buffer pointed to by the pointer. As discussed in Section IV-A,
a 5-bit encoding is a practical choice for expressing buffer
size information. This representation is compact enough to
be embedded within the upper bits of the pointer, even when
accounting for potential future address bit extensions. Figure 6
illustrates how the 64-bit pointer address is divided into Extent,
Unmodifiable, and Modifiable segments.

1) Extent Bits (E): The top five most significant bits
(MSBs) in a 64-bit pointer store the buffer size data. These
bits are referred to as Extent Bits (with offset). The buffer
size can be derived from the extent bits using the following
equation:

E = ⌈max(log2(K), log2(S))⌉ − log2(K) + 1,

where K is the minimum allocation size, and S is the
requested memory size. To distinguish invalid pointers, which

1653

Extent Actual Address bit
Still

unused

5b 59b

Extent Unmodifiable Modifiable

 f(Extent) bits

High 32bit Register Low 32bit Register

Fig. 6: 64-bit pointer structure and its mapping to two 32-bit physical
registers. The extent field indicates both the size and pointer validity,
while the unmodifiable bits serve as an ID for tracking pointer
liveness, as detailed in Section VIII.

have an extent value of 0, we add 1 to the buffer size
calculation. This enables encoding up to 31 (25 − 1) distinct
2n-aligned buffer sizes. We select K = 256 to minimize
the number of embedded bits, leveraging the default 256-byte
GPU allocation size. This configuration allows buffer sizes
ranging from 256 bytes to 256 GiB.

2) Unmodifiable Bits (UM) and Modifiable Bits (M): The
address bits, other than the Extent Bits (E), represent the actual
memory address used for memory operations. The Extent
Bits determine the number of Modifiable Bits (M), while
the remaining bits become Unmodifiable Bits (UM), which
must remain unchanged throughout the pointer’s lifetime. LMI
performs bounds-checking by ensuring that these unmodifiable
bits are not modified.

B. Memory Allocation for Each Memory Type

Given the diverse memory types within a GPU system, it is
essential to formulate appropriate allocation policies tailored to
each memory region. Notably, GPU memory allocation, akin
to that of CPUs, provides virtually contiguous memory buffers
for local, shared, and global memory. LMI’s OCU operates
based on virtual memory addresses, irrespective of the physical
contiguity of the buffers.
Global Memory: Memory buffers in global memory are
typically allocated through device-specific memory allocation
functions, such as cudaMalloc(), and the same princi-
ples extend to deallocation functions, such as cudaFree().
When cudaMalloc() is invoked, the memory manager,
which allocates memory on the device, determines the al-
location size by rounding it up to the smallest 2n size.
Subsequently, it embeds the 5-bit extent value into the top 5
MSBs of the pointer for further bounds-checking operations.
When cudaFree() is invoked, the extent bits are set to 0
to invalidate the pointer and prohibit further access. Temporal
safety is discussed in detail in Section VIII.
Heap Memory: Heap memory is allocated by the malloc()
runtime library on the device. The procedure to prepare the
buffer and pointer is the same as for global memory, except
that device allocator functions malloc() and free() are
used instead of cudaMalloc() and cudaFree().
Shared Memory: Shared memory is allocated during a kernel
launch. The total size of shared memory is provided as a
parameter during the kernel launch. Consequently, the re-
sponsibility for aligning shared memory falls upon the kernel
driver.

1 __global__ void dummy(int size) {
2 int buf[96]; ..
3 }

(a) Original code for stack allocation.
1 // Beginning of the function dummy
2 _Z7dummy2i:
3 .text._Z7dummy2i:
4 // Load stack pointer from constant memory
5 MOV R1, c[0x0][0x28] ;
6 // Secure 0x60 (96 bytes) memory with a memory

operation.
7 IADD3 R1, R1, -0x60, RZ;

(b) Compiled SASS code for stack allocation.

Fig. 7: Stack memory allocation.

Stack Memory: Unlike the allocation process for global
or heap memory buffers, stack buffers are established by
the compiler. Figure 7 illustrates how a buffer declared in
kernel C++ code is transformed into CUDA’s SASS code.
Interestingly, the pointer to the top of the stack is transmitted
via constant bank 0 (c[0x0]), which subsequently secures
the buffer region by subtracting the buffer size from the stack
pointer. To support stack protection within LMI, the GPU
driver first identifies the aligned memory address and stores
this address within the corresponding constant memory. When
the compiler generates code to set up the stack, it includes
instructions to subtract an amount equal to the buffer size,
rounded up to the nearest power of two, from the stack’s top
address.

VI. LMI COMPILER ANALYSIS

A. Tracking Pointer Arithmetic Instructions

Bounds-checking is typically performed on LD/ST instruc-
tions, where it is evident that the operands are addresses.
However, for integer instructions, processors cannot easily
determine whether their operands are pointers without support
from a software framework.

To address this limitation, we devised an LLVM [33] pass
that analyzes kernel code to identify LLVM pointer arithmetic
instructions and pinpoint which operands contain pointer val-
ues. This approach not only ensures accurate runtime valida-
tion but also eliminates unnecessary bounds-checking.

Figure 8 illustrates the LLVM pass responsible for identi-
fying instructions with pointer operands. Information gathered
from the LLVM IR analysis is passed as metadata to the back-
end and utilized for microcode generation.

Notably, LMI restricts the storage of pointers in memory.
GPU programs typically avoid this practice due to the inef-
ficiency of pointer chasing, which stems from high memory
latency. This observation is supported by an extensive analysis
of SASS code from 80 applications across diverse benchmarks,
including the Heterogeneous System Benchmark [11], Graph
Processing [42], Deep Learning Benchmark [29], and Large
Language Models [47], using the cuobjdump tool. This char-
acteristic allows our system to implement an efficient bounds-
checking mechanism without the overhead of tracking pointers

1654

1 for (BasicBlock &BB : F) {
2 for (Instruction &I : BB) {
3 // Check instructions with pointer operands.
4 // This information will be used during assembly code

generation.
5 if (I.getNumOperands() > 0) {
6 for (Use &U : I.operands()) {
7 if (U->getType()->isPointerTy()) {
8 Mark_on_instruction(U);
9 ...

Fig. 8: LLVM code snippet to locate instructions with pointer
operands.

stored in memory, as demonstrated in CHEx86 [55]. Memory
safety for addresses stored in memory will be addressed in
future work.

The compiler front-end identifies instructions with pointer
operands, and the gathered information is delivered to the
back-end as metadata. The back-end then generates assembly
instructions with two hint bits, utilizing the reserved (RSVD)
field in the instruction microcode, as shown in Figure 9.

B. GPU Instruction Microcode Format

Zhe et al. [27] reveal that NVIDIA GPUs use a 128-
bit instruction format, which is larger than that of CPUs
and older-generation GPUs. This expanded format includes
not only opcodes and source and destination registers but
also control flow information. Such a design reduces runtime
scheduling overhead and simplifies the hardware scheduler’s
implementation. Their study also reveals that 14 bits in the
instruction format, located between the control information
and the instruction code, are currently unused. We confirmed
that NVIDIA GPUs with Compute Capability 7.0–7.2 have 14
reserved bits, while those with Compute Capability 7.5–9.0
have 13.

This reserved space enables us to repurpose two bits in
the instruction microcode for our OCU (Overflow Checking
Unit). These bits serve as two hints: 1) Activation (A), and
2) Address Register Selection (S). The microcode with these
hint bits, as shown in Figure 9, can be leveraged to determine
whether the current instruction requires a bounds check (Bit
A) and to identify which register holds the base pointer value
(Bit S). For GPUs utilizing a 64-bit ISA, such as AMD and
Intel models, new opcodes for memory ALU operations could
be introduced to implement our approach. As we discuss in
Section VII, this requires only a small number of instructions,
such as integer arithmetic or bit-wise operations.

Instruction

Control
0

127

RSVD InstructionA S

64

63 41 40 27 2628

Fig. 9: CUDA’s 128-bit instruction microcode format. The 28th bit
(’A’), shown in the yellow box, serves as the activation bit, indicating
that the instruction involves pointer handling and requires bounds
checking. The 27th bit (’S’), shown in the orange box, functions
as the selection bit, specifying the operand that contains the pointer
address.

VII. HARDWARE OVERFLOW CHECKING UNIT

The ultimate goal of the hardware OCU is to determine
whether the current ALU operation illicitly alters the upper bits
beyond the range of its memory buffer. The OCU consists of a
multiplexer (MUX), a mask generator, an XOR gate, an AND
gate, a comparator to check for zero, and logic to clear extent
bits to 0. The location of the bound-checking unit within a
streaming multiprocessor (SM) core is depicted in Figure 10.
Notably, OCUs are only added to integer ALUs, as FPUs are
not used for pointer calculations. An Extent Checker (EC),
which ensures the extent bit is zero during load/store (LD/ST)
operations, is also necessary to avoid false positives. Further
discussion will be presented in Section XII-A.

GPU Processing Block

INT32FP32FP64 FP32
INT32FP32FP64 FP32
INT32FP32FP64 FP32
INT32FP32FP64 FP32

INT32FP32FP64 FP32
INT32FP32FP64 FP32

LD/
ST

LD/
ST

SFU
LD/
ST

OC
OC
OC
OC

OC
OC

Register File (64KB)

Warp Scheduler
Dispatch Unit

L0 Instruction Cache

............

MemCtrlMemCtrlMemCtrl

SM

Processing Block

Processing Block

L1 Data Cache/
Shared Memory

LD/
ST

...

GPU MemoryGPU MemoryGPU MemoryGPU
Memory

MemCtrlPCIe EP

Bus

CPU OC : Overflow Checking Unit

L2$L2$

SMSMSMSMSMSM ...

SMSMSMSMSMSM ...

EC

EC : Extent Checker

Processing Block

Processing Block
EC EC EC

Fig. 10: LMI’s OCU and EC (Extent Checker) in GPU Architecture.
Bound-checking units are only required for integer ALUs.

A. Checking Hint Bits in Microcode

After a kernel launch, the instruction decoder delivers the
hint bits ([27:28]) to LMI’s OCU. The OCU examines the
activation bit ([28]) to determine whether the current instruc-
tion involves pointer operations. If it is marked, the OCU
then checks the selection bit ([27]) to identify the ALU input
operand holding the memory address.

B. Mask Generation and Overflow Detection

At this stage, the OCU generates a mask derived from the
extent bits. The extent bit size might not exactly match the
buffer size; therefore, the mask generator accounts for the
minimum memory allocation size (default: 256). Based on
the extent value, the mask generator creates an address mask
to capture changes in the modifiable bits (with a size less
than 2f(Extent)). Concurrently, an XOR operation is performed
between the selected input register and the ALU output to
identify which bits have been modified by the pointer arith-
metic operation. The input register value is stored in a queue
and synchronized with the order of incoming outputs to ensure
the proper input register corresponds to the current result.

C. Overflow Detection within the Masked Bit Region

Overflow detection is straightforward. The OCU performs
an AND operation between the address mask and the XOR
result from the previous stage. A nonzero result indicates
an overflow in bits exceeding the current buffer allocation
size. If an error is detected, instead of immediately generating

1655

the error, the extent bits are cleared to zero. An error will
subsequently be raised by the EC (Extent Checker) in the LSU
when the extent value is zero. The rationale behind the delayed
termination is discussed in Section XII-A.

VIII. TEMPORAL MEMORY SAFETY IN LMI

Temporal memory safety ensures that memory is not ac-
cessed after it has been freed or reallocated. LMI enforces
temporal safety by invalidating pointers when their target
memory buffers are freed or go out of scope due to a function
return. Specifically, the LMI compiler pass inserts instructions
to nullify a pointer’s extent field either immediately after a
free() function call or just before returning to the caller
function. During load and store operations, the Extent Checker
(EC) evaluates the pointer’s extent value. If the extent is
zero, the EC raises an error, using a mechanism similar to
that employed for detecting pointer arithmetic overflow.

This approach is particularly effective for GPU pro-
grams, which often access array-like data structures us-
ing a fixed base_address and variable offsets. Since
the base_address remains unchanged and is reused un-
til the program terminates, invalidating the extent in the
base_address pointer effectively ensures temporal safety.

However, while this temporal safety mechanism effectively
protects typical GPU programs, it faces challenges when
handling pointer copies. Only pointers explicitly passed to the
free() function are invalidated, leaving duplicated pointers
valid, as shown in Figure 11. This limitation is addressed in
Section XII-C, where we propose an enhanced mechanism
incorporating additional hardware and runtime support.

1 int* A = malloc(sizeof(int) * 4);
2 B = A[0]; // No error: safe access. A has a valid

extent.
3 C = A + 1;
4 free(A); // Pointer A will be invalidated after this.
5 D = A[0]; // Error: unsafe access. A is invalid.
6 E = A + 1;
7 F = E[0]; // Error: unsafe access. E is invalid.
8 G = C[0]; // No error but UNSAFE access. C is not

invalidated.

Fig. 11: LMI Temporal safety: While free(A) invalidates the
pointer A, it does not invalidate a copied pointer, such as C.

IX. SECURITY EVALUATION

Table III provides a summary of the security coverage for
each mechanism. The security benchmarks are reconstructed
based on the descriptions of security evaluations in the cu-
Catch [58] paper, as detailed memory safety test cases in
cuCatch are not publicly available.

Memory safety is broadly categorized into two types: spatial
and temporal. Spatial memory safety is further subdivided by
memory types: global, heap (device), local (stack), and shared
memory. For local memory, test cases include single-buffer
and multi-buffer scenarios, evaluating vulnerabilities within a
frame, across frames, and beyond local memory boundaries.
Similarly, shared memory tests cover single-buffer and multi-
buffer cases, assessing vulnerabilities within shared memory,

beyond shared memory, and overflows between static and
dynamic shared memory. For global, heap, and local memory,
the test cases address two types of out-of-bounds (OoB) errors:
(1) adjacent OoB and (2) non-adjacent OoB. Additionally,
intra-object OoB errors, which occur between two fields within
the same structure, are tested.

Temporal memory safety is categorized into four types: (1)
Use-After-Free (UAF) for global and heap memory, (2) Use-
After-Scope (UAS) for local memory, (3) invalid free, and
(4) double-free. Each category includes two subcategories: (a)
immediate errors, where a pointer is dereferenced immediately
after being freed, and (b) delayed errors, where a pointer is
dereferenced after the memory allocator has potentially reas-
signed the memory. Furthermore, test cases for each category
examine errors involving either (i) the original pointer or (ii)
a copied pointer (§VIII).

TABLE III: Security Evaluation: Please note that the security eval-
uations are based on the descriptions provided in each paper.

Violation Test GMOD GPUShield cuCatch LMI

Sp
at

ia
l Global OoB 2 1 2 2 2

Heap OoB 3 0 1 0 3
Local OoB 8 0 2 6 8

Shared OoB 6 0 0 5 6
Intra OoB 3 0 0 0 0

Coverage 4.8% 28.6% 61.9% 85.7%

Te
m

po
ra

l UAFa 8 0 0 4 4
UASb 4 0 0 4 4

Invalid free 2 2 2 2 2
Double free 2 2 2 2 2

Coverage 25% 25% 75.0% 75.0%
a Use-After-Free. b Use-After-Scope.

A. Spatial Memory Safety

We evaluate 19 OOB test cases for global, heap, local, and
shared memory regions, and 3 for intra-OOB. GMOD [14],
which relies on Canary, failed to detect non-adjacent access
cases in global memory and does not provide protection
for heap, local, and shared memory. GPUShield supports
protection for global memory, but it offers only coarse-grained
protection for heap and local memory. cuCatch does not
protect the device heap and provides limited protection in a
single buffer and within the same frame for local memory, as
well as for dynamically allocated multiple buffers in shared
memory. LMI provides better protection across all memory
types, including heap, due to its versatile and straightforward
memory protection scheme. LMI protects statically allocated
shared memory objects, and a similar approach could be
extended to dynamic allocations. However, we do not consider
this in this work because (1) dynamic allocations in shared
memory are handled implicitly by proprietary driver code, and
(2) it could lead to significant fragmentation of the shared
memory pool due to its comparatively small size. Instead,
LMI provides coarse-grained protection for the dynamically
allocated pool as a whole. Finally, like other schemes, LMI
does not protect against OOB reads/writes across different
fields within the same structure.

1656

B. Temporal Memory Safety

We evaluate 16 test cases for temporal memory vulner-
abilities, including UAF, UAS, invalid-free, and double-free
scenarios. cuCatch demonstrates a low probability of missing
delayed UAF and UAS errors. In contrast, LMI detects both
immediate and delayed UAF errors by verifying the Extent
bits in pointers (§VIII). However, LMI cannot detect issues
involving copied pointers, a limitation addressed by cuCatch.
Neither GMOD nor GPUShield provides protection for tem-
poral safety. Protection against invalid free and double-free
scenarios is provided by basic CUDA functions.

X. EVALUATION METHOD

To evaluate the performance of LMI, we used MacSim [31],
a heterogeneous cycle-level GPU simulator. CUDA traces for
the simulation were generated using NVBit [60]. The baseline
GPU configuration is detailed in Table IV.

TABLE IV: Configuration for NVIDIA GPU simulations.

SM Core 80 Cores @ 2GHz
Scheduler 4 warps scheduler/SM, GTO
L1 Cache 96KB, 30 cycle latency
L2 Cache 4.5 MB, 24-way, 200 cycle latency
DRAM 8GB HBM

We evaluate a range of CUDA GPU benchmarks, as sum-
marized in Table V, including the Rodinia Benchmark [11],
FasterTransformer [47], and Tango [29]. Additionally, to as-
sess the performance impact on mission-critical applications,
we examine widely used models from the Autonomous Driv-
ing (AD) domain, such as MOTR [68] for multiple object
tracking, DETR [10] for object detection, BEVerse [69] for
occupancy prediction, and Segformer [66] for map segmenta-
tion.

TABLE V: Benchmarks for evaluation.

Benchmark Suite Benchmark

Rodinia backprop, bfs, dwt2d, gaussian, hotspot,
lavaMD, lud cuda, needle, nn,

particlefilter float, particlefilter naive,
pathfinder, sc gpu, srad v1, srad v2

Tango AlexNet, CifarNet, GRU, LSTM
FasterTransformer bert, decoding, swin, wenet decoder,

wenet encoder
AD BEVerse, DETR, MOTR, segformer

A. Comparison with the Hardware/Compiler Mechanisms

We first compare the performance of LMI with two existing
mechanisms: the hardware-based GPUShield [35] and the
compiler-based Baggy Bounds [5]. The GPUShield mecha-
nism is implemented in MacSim according to the methodology
outlined in its original paper, and its performance is evaluated
using GPU benchmarks. We evaluate Baggy Bounds by in-
jecting bounds-checking SASS instructions after each pointer
operation.

B. Comparison with Software DBI Mechanisms

We also measured the performance overhead of LMI’s
DBI (Dynamic Binary Instrumentation) implementation us-
ing NVBit [60]. This is implemented by injecting code to
call the bounds-checking function into every instruction that
accesses memory regions allocated via cudaMalloc().
To achieve this, we first verified that each benchmark in
Table V uses global memory by calling cudaMalloc()
and passing the resulting pointers to CUDA kernels. The
bounds-checking logic for LMI involved identifying whether
an instruction operand was a pointer to the global memory
region. For such operands, we inserted bounds-checking op-
erations immediately after the instruction. We tracked the
registers and unified registers associated with these pointers
and injected bounds-checking instructions accordingly. Addi-
tionally, we extended the bounds-checking logic to instructions
that access shared and local memory regions. Using NVBit’s
getMemorySpace() function, we identified relevant in-
structions, such as LDS, LDL, STS, and STL, and added the
corresponding bounds-checking operations. For comparison,
we also measured the performance of memcheck in Compute
Sanitizer [58]. Memcheck is a tripwire-based runtime tool
that detects out-of-bounds or misaligned memory accesses,
including those involving global, local, shared, and atomic in-
structions. While both LMI and memcheck introduce overhead
by injecting bounds-checking instructions around memory-
related operations, LMI additionally incurs overhead for non-
LD/ST operations, whereas memcheck’s impact is confined to
memory LD/ST operations.

XI. RESULTS

A. LMI Vs. Hardware/Compiler Mechanisms

Figure 12 presents the normalized execution times of Baggy
Bounds Checking, GPUShield [35], and LMI relative to the
baseline. LMI achieves near-zero performance overhead across
all GPU benchmarks, with an average overhead of just 0.22%.
While GPUShield also demonstrates competitive performance,
LMI significantly reduces overhead in benchmarks such as
needle and LSTM, where the overhead drops from 42.5%
and 24.0% to 0.043% and 0.0016%, respectively. The primary
reason for the performance difference arises from GPUShield’s
L1 RCache latency. In memory-intensive workloads, most of
the memory requests hit the L1 Dcache. Using the same
hardware configuration as GPUShield, where the L1 Dcache
is larger than the L1 RCache, situations occur where L1 D$
hits and L1 R$ misses frequently for uncoalesced memory
operations, especially in benchmarks such as needle and
LSTM. However, since the performance of LMI is not affected
by memory access patterns, LMI can achieve comparable
performance to the baseline.

In contrast, Baggy Bounds Checking incurs substantially
higher overhead, averaging 87%, with peak overhead reaching
503% for compute-bound applications. These results align
with the findings in the original paper, which reported a 72%

1657

backprop bfs
dwt2d

gaussian
hotspot

lavaMD
lud_cuda

needle nn

particlefilte
r_float

particlefilte
r_naive

pathfinder
sc_gpu

srad_v1
srad_v2

AlexNet
CifarNet

GRU
LSTM bert

decoding
swin

wenet_decoder

wenet_encoder

BEVerse
DETR

MOTR

segformer

geomean
0.0

0.5

1.0

1.5

2.0

N
or

m
. E

xe
c

Ti
m

e 2.5 5.1 2.7 2.4 2.7 2.1 2.0 2.1 6.0 2.2 2.5

Baggy Bounds GPUShield LMI

Fig. 12: Performance comparison among Baggy bounds [5] for GPU, GPUShield [35], and LMI.

average performance overhead on SPEC CPU2000 bench-
marks. By leveraging hardware support, LMI offers a sub-
stantial performance advantage over Baggy Bounds Checking,
a software-based approach naively adapted to GPUs, thereby
demonstrating the effectiveness of its design.

B. LMI with DBI Implementation Vs. Compute-Sanitizer

backp
rop bfs

dwt2d

gaussi
an

hotsp
ot

lavaMD

lud_cuda
needle nn

partic
lefilte

r_float

partic
lefilte

r_naive

pathfinder

sc_
gpu

sra
d_v1

sra
d_v2

AlexN
et

CifarNet
GRU

LSTMbert

decoding
sw

in

wenet_decoder

wenet_encoder

geomean

10
1

10
3

N
or

m
. E

xe
c

Ti
m

e

LMI (SW) - NVBit Compute Sanitizer

Fig. 13: Performance comparison between LMI with DBI and
NVIDIA’s Compute Sanitizer.

The DBI approaches for memory-bound checking show
a significant overhead in most GPU benchmarks. Figure 13
illustrates the normalized execution time on a logarithmic
scale.1 LMI with DBI implementation has a geometric mean
performance overhead of 72.95 times, while Memcheck’s
overhead is 32.98 times across all benchmarks. memcheck
significantly outperforms LMI by DBI in cases like Gaussian,
while LMI performs better in others, like swin, This perfor-
mance variability is due to differences in the ratio of LMI
bound checks to LD/ST instructions, with ratios of 67.14 for
Gaussian and 28.13 for swin. The higher ratio for Gaussian
indicates greater performance degradation with LMI, whereas
the lower ratio for swin suggests less impact.

Breaking down the performance of the DBI implementation
is challenging because the CUDA framework does not support
the simultaneous use of the Nsight Performance Analysis tool
with compute-sanitizer or NVBit. This limitation complicates
the analysis of LMI’s internal performance when using DBI.
However, leveraging Linux’s perf utility, we determined that
the JIT compilation process in cuda-memcheck introduces

1AD benchmarks are excluded due to compatibility issues with NVBit and
out-of-memory errors with compute-sanitizer.

an average overhead of 5.2%, indicating that most of the
performance overhead originates from executing the inserted
instructions. This finding aligns with NVIDIA’s NVBit pa-
per [60], which reports an average JIT compilation overhead
of 4% and a peak overhead of 20%.

C. LMI OCU Size and Latency Evaluation

We evaluate the hardware overhead of OCU using Cadence
tools with the FreePDK45nm library. The critical path latency
is measured at 0.63 ns, corresponding to a maximum frequency
(fmax) of 1.587 GHz. Considering that modern GPUs operate
at frequencies exceeding 3 GHz, we incorporate two register
slices into LMI’s logic to accommodate the higher clock rates.
This modification introduces a three-cycle delay due to the
bounds-checking logic for pointer operations.

As shown in Table VI, the hardware cost of LMI is
significantly smaller compared to other schemes that involve
additional cache hierarchy, SRAM, or extra ECC logic. Fur-
thermore, the verification scope of LMI is minimized, as its
impact is confined to the Integer ALU and LSU logic.

TABLE VI: Hardware overhead comparison based on their descrip-
tions (T: Thread, W: Warp, SM: Streaming Multiprocessor, C: Core).

Target Additional Logic Gate(GEa) SRAM
(Byte)

To Be
Verified

No-Fat Bounds checking,
base computing

59,476/C 1024/C LSU, NoC,
cache

C3 Keystream
generator

27,280b/C 0 LSU, NoC,
cache

IMT Tag logic in ECC 900/SM 0 Memctrl,
ECC, cache

GPU
Shield

2-Level cache,
comparator

1000/W 910/W LSU, NoC,
cache

LMI 4x gate, subtract,
shift, comparator

153/T 0 ALU (INT
only), LSU

aGate Equivalent
bBased on Ascon [8] implementation.

XII. DISCUSSION

A. False Positive Avoidance: Delayed Termination

LMI detects overflows in pointer operations before actual
memory accesses occur. However, as illustrated in Figure 14,
it is common for programs to increment an array pointer
beyond its bounds and then exit the loop or return from the

1658

function without accessing the out-of-bounds memory address.
To handle this scenario, LMI implements delayed program
termination, ensuring that termination occurs only when an
out-of-bounds pointer is used for actual memory access. This
behavior is controlled by the EC in the LSU, which checks
the extent bits to confirm they are non-zero before permitting
memory access.

1 int * start = (int *)malloc(16*sizeof(int));
2 int * end = start + len(start);
3 for (int * ptr = start ; ptr < end ; ptr++)
4 * ptr ++;

Fig. 14: The example demonstrates a false positive scenario. In the
final loop iteration, ptr points to an out-of-bounds memory location,
specifically start[16]. However, since the loop exits without
accessing this memory, no system error should be triggered.

B. False Negative Avoidance: No Immediate Value Assignment

The correct-by-construction rule of LMI can be violated
through direct assignments of immediate values to pointers.
Such assignments allow pointers to be set to unverified values
with invalid extent bits. To prevent this, LMI employs static-
time analysis to detect inttoptr and ptrtoint instruc-
tions in LLVM IR, generating a compiler error when these
instructions are encountered. This restriction is consistent with
prior studies [5], [55].

To assess the feasibility of this restriction, we compiled
57 kernel files from the Rodinia, HeteroMark, GraphBig, and
Tango benchmarks using clang++14. None of these kernels
contained ptrtoint or inttoptr instructions. Further-
more, analyzing 111 files from the CUDA samples revealed
three instances of inttoptr casting. In all cases, the pointers
involved were confined to inlined cooperative group functions
(e.g., cg::this_grid()), which are inaccessible to users.
In 46 kernel files from FasterTransformer, we identified one
instance where a void* pointer was cast to a 64-bit integer
and then to a float pointer. To resolve this, we modified the
code to cast the pointer directly to float** instead of int*
during the initial type cast. Notably, this kernel is not part of
the build process for the evaluation targets.

C. Enhanced UAF Protection with Pointer Liveness Tracking

In Section VIII, we discussed the current limitations of
LMI’s temporal safety. In this section, we outline potential
directions for enhancing temporal safety in future work.
Several studies, such as DangNull [34] and CETS [40],
use shadow-object memory to track the liveness of pointers
and their derivatives. These methods introduce significant
performance overhead due to shadow-object traversal and
increased memory usage. In contrast, LMI utilizes the UM bits
(see §V-A2) for efficient pointer liveness tracking. These UM
bits, which remain constant throughout program execution,
serve as unique identifiers for memory buffers. Fortunately, in
LMI, only one buffer exists with the same UM due to memory
allocation constraints, ensuring that the UM bits uniquely
identify a memory buffer. By tracking the UM bits, LMI avoids
the need to trace all derivative pointers, enabling efficient

liveness tracking without excessive overhead. The proposed
procedure is outlined in Algorithm 1.

Algorithm 1 Pointer Liveness Tracking Algorithm.
1: function MALLOC HOOKED(allocSize)
2: allocSize← least PoW2(N)
3: bufP tr ← malloc(N)
4: um← pick unmodifiable(allocSize, bufPtr)
5: if !pageInvalidOpt ∨ (allocSize ≤ pageSize/2) then
6: register(um)
7: end if
8: end function
9: function FREE HOOKED(bufP tr)

10: size← pickSize(bufP tr)
11: if !pageInvalidOpt & (size ≤ pageSize) then
12: um← pick unmodifiable(size, bufP tr)
13: if um ∈ S then
14: deregister(um)
15: end if
16: else
17: Invalidate pages(size, bufP tr) ▷ Unmapping pages

associated with the buffer.
18: end if
19: end function

To further optimize memory usage for memory object track-
ing, we can incorporate memory map invalidation techniques
inspired by previous studies [3], [62]. By leveraging 2n-
aligned memory size, we ensure that large memory allocations
(> pageSize/2) are assigned to dedicated memory pages.
For example, a 48KB allocation is rounded up to a full
64KB page, guaranteeing that no other buffers reside on that
page. This design eliminates the need to track individual
pointers, as entire pages associated with deallocated buffers
can be invalidated. Enabled by setting the pageInvalidOpt
environment variable, this optimization balances the trade-off
between the overhead of memory page invalidation and the
reduction in Membership Table entries.

XIII. CONCLUSIONS

The growing importance of ensuring robust GPU systems
stems from their critical role in decision-making applications.
However, GPU programming languages inherit memory vul-
nerabilities, and adapting CPU-centric solutions to GPUs’
highly parallel architectures often proves inefficient. To ad-
dress these challenges, LMI introduces a fine-grained memory
safety mechanism specifically designed for GPUs. It incor-
porates an optimized hardware bounds-checking mechanism
capable of handling the stress of thousands of simultane-
ous memory-accessing threads. By leveraging power-of-two-
aligned pointers and static analysis, this approach exploits the
unique characteristics of GPU programs to provide both spatial
and temporal memory safety with minimal hardware overhead
and negligible performance impact.

XIV. ACKNOWLEDGEMENTS

This research is based on work partially supported by NSF
2316176 and the Intelligence Advanced Research Projects Ac-
tivity (IARPA) through the Advanced Graphical Intelligence
Logical Computing Environment (AGILE) research program.

1659

REFERENCES

[1] Advanced Micro Devices (AMD), “Hip: C++ heterogeneous-compute in-
terface for portability,” https://github.com/ROCm-Developer-Tools/HIP,
2021.

[2] Advanced Micro Devices (AMD), “Amd epyc 9004 series architecture
overview,” AMDEPYC9004SeriesArchitectureOverview, 2022.

[3] S. Ainsworth and T. M. Jones, “Markus: Drop-in use-after-free preven-
tion for low-level languages,” in 2020 IEEE Symposium on Security and
Privacy (SP). IEEE, 2020, pp. 578–591.

[4] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro,
“Preventing memory error exploits with wit,” in Proceedings of
the 2008 IEEE Symposium on Security and Privacy, ser. SP ’08.
USA: IEEE Computer Society, 2008, p. 263–277. [Online]. Available:
https://doi.org/10.1109/SP.2008.30

[5] P. Akritidis, M. Costa, M. Castro, and S. Hand, “Baggy bounds checking:
An efficient and backwards-compatible defense against out-of-bounds
errors,” in Proceedings of the 18th Conference on USENIX Security
Symposium, ser. SSYM’09. USA: USENIX Association, 2009, p.
51–66.

[6] J. P. Anderson et al., “Computer security technology planning study,”
ESD-TR-73-51, Tech. Rep., 1972.

[7] Arm, “Armv8.5-a memory tagging extension,” 2021. [Online].
Available: https://developer.arm.com/-/media/Arm%20Developer%
20Community/PDF/Arm Memory Tagging Extension Whitepaper.pdf

[8] Ascon, “Ascon hardware implementation.” [Online]. Available: https:
//ascon.iaik.tugraz.at/implementations.html

[9] B. Bierbaumer, J. Kirsch, T. Kittel, A. Francillon, and A. Zarras,
“Smashing the stack protector for fun and profit,” in ICT Systems Secu-
rity and Privacy Protection: 33rd IFIP TC 11 International Conference,
SEC 2018, Held at the 24th IFIP World Computer Congress, WCC 2018,
Poznan, Poland, September 18-20, 2018, Proceedings 33. Springer,
2018, pp. 293–306.

[10] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-end object detection with transformers,” in
European conference on computer vision. Springer, 2020, pp. 213–
229.

[11] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in Proceedings of the 2009 IEEE International Symposium on Workload
Characterization (IISWC). Piscataway, NJ, USA: IEEE, 2009, pp. 44–
54.

[12] J. Devietti, C. Blundell, M. M. K. Martin, and S. Zdancewic, “Hard-
bound: Architectural support for spatial safety of the c programming
language,” in Proceedings of the 13th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). New York, NY, USA: Association for Computing
Machinery, 2008, pp. 103–114.

[13] D. Dhurjati, S. Kowshik, and V. Adve, “Safecode: enforcing alias
analysis for weakly typed languages,” in Proceedings of the 27th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’06. New York, NY, USA: Association
for Computing Machinery, 2006, p. 144–157. [Online]. Available:
https://doi.org/10.1145/1133981.1133999

[14] B. Di, J. Sun, D. Li, H. Chen, and Z. Quan, “GMOD: A
dynamic GPU memory overflow detector,” in Proceedings of the
27th ACM International Conference on Parallel Architecture and
Compilation Techniques (PACT). New York, NY, USA: Association
for Computing Machinery, 2018, pp. 1–13. [Online]. Available:
https://doi.org/10.1145/3243176.3243194

[15] S. B. Dutta, H. Naghibijouybari, N. Abu-Ghazaleh, A. Marquez, and
K. Barker, “Leaky buddies: Cross-component covert channels on inte-
grated cpu-gpu systems,” in 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA), 2021, pp. 972–984.

[16] S. B. Dutta, H. Naghibijouybari, A. Gupta, N. Abu-Ghazaleh,
A. Marquez, and K. Barker, “Spy in the gpu-box: Covert and side
channel attacks on multi-gpu systems,” in Proceedings of the 50th
Annual International Symposium on Computer Architecture, ser. ISCA
’23. New York, NY, USA: Association for Computing Machinery,
2023. [Online]. Available: https://doi.org/10.1145/3579371.3589080

[17] C. Erb, M. Collins, and J. L. Greathouse, “Dynamic buffer overflow de-
tection for gpgpus,” in Proceedings of the 15th International Symposium
on Code Generation and Optimization (CGO). Piscataway, NJ, USA:
IEEE, 2017, pp. 61–73.

[18] A. Esteva, K. Chou, S. Yeung, N. Naik, A. Madani, A. Mottaghi, Y. Liu,
E. Topol, J. Dean, and R. Socher, “Deep learning-enabled medical
computer vision,” NPJ digital medicine, vol. 4, no. 1, p. 5, 2021.

[19] U. Farooq and H. Mehrez, “Pre-silicon verification using multi-fpga
platforms: A review,” Journal of Electronic Testing, vol. 37, no. 1, pp.
7–24, 2021.

[20] S. Ghemawat and P. Menage, “Tcmalloc: Thread-caching malloc,” 2009.
[21] Y. Guo, Z. Zhang, and J. Yang, “{GPU} memory exploitation for fun

and profit,” in 33rd USENIX Security Symposium (USENIX Security 24),
2024, pp. 4033–4050.

[22] M. T. Ibn Ziad, M. A. Arroyo, E. Manzhosov, R. Piersma, and
S. Sethumadhavan, “No-fat: Architectural support for low overhead
memory safety checks,” in Proceedings of the 48th Annual International
Symposium on Computer Architecture (ISCA). Piscataway, NJ, USA:
IEEE Press, 2021, pp. 916–929.

[23] M. T. Ibn Ziad, M. A. Arroyo, E. Manzhosov, and S. Sethumadha-
van, “ZerØ: Zero-overhead resilient operation under pointer integrity
attacks,” in Proceedings of the 48th Annual International Symposium
on Computer Architecture (ISCA). Piscataway, NJ, USA: IEEE, 2021,
pp. 999–1012.

[24] Intel, “5-level paging and 5-level ept,” https://www.intel.com/content/
www/us/en/content-details/671442/5-level-paging-and-5-level-ept-
white-paper.html, 2017.

[25] J. Janai, F. Güney, A. Behl, A. Geiger et al., “Computer vision for au-
tonomous vehicles: Problems, datasets and state of the art,” Foundations
and Trends® in Computer Graphics and Vision, vol. 12, no. 1–3, pp.
1–308, 2020.

[26] H. Jeon, N. Karimian, and T. Lehman, “A new foe in gpus: Power
side-channel attacks on neural network,” in 2021 22nd International
Symposium on Quality Electronic Design (ISQED), 2021, pp. 313–313.

[27] Z. Jia, M. Maggioni, B. Staiger, and D. P. Scarpazza, “Dissecting the
nvidia volta gpu architecture via microbenchmarking,” 2018.

[28] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney, and
Y. Wang, “Cyclone: A safe dialect of c,” in Proceedings of the General
Track of the Annual Conference on USENIX Annual Technical Confer-
ence, ser. ATEC ’02. USA: USENIX Association, 2002, p. 275–288.

[29] A. Karki, C. P. Keshava, S. M. Shivakumar, J. Skow, G. M. Hegde,
and H. Jeon, “Detailed characterization of deep neural networks on
gpus and fpgas,” in Proceedings of the 12th Workshop on General
Purpose Processing Using GPUs, ser. GPGPU ’19. New York, NY,
USA: Association for Computing Machinery, 2019, p. 12–21. [Online].
Available: https://doi.org/10.1145/3300053.3319418

[30] Khronos Group, “The OpenCL specification,” https://www.khronos.org/
registry/OpenCL/specs/opencl-2.0.pdf, 2015.

[31] H. Kim, J. Lee, N. B. Lakshminarayana, J. Sim, J. Lim, T. Pho,
H. Kim, and R. Hadidi, “MacSim: A cpu-gpu heterogeneous simulation
framework user guide,” 2012, https://github.com/gthparch/macsim.

[32] Y. Kim, J. Lee, and H. Kim, “Hardware-based always-on heap memory
safety,” in Proceedings of the 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). Piscataway, NJ, USA:
IEEE, 2020, pp. 1153–1166.

[33] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Proceedings of the International
Symposium on Code Generation and Optimization (CGO): Feedback-
Directed and Runtime Optimization. USA: IEEE Computer Society,
2004, pp. 75–86.

[34] B. Lee, C. Song, Y. Jang, T. Wang, T. Kim, L. Lu, and W. Lee,
“Preventing use-after-free with dangling pointers nullification.” in NDSS,
2015.

[35] J. Lee, Y. Kim, J. Cao, E. Kim, J. Lee, and H. Kim, “Securing gpu
via region-based bounds checking,” in Proceedings of the 49th Annual
International Symposium on Computer Architecture, ser. ISCA ’22.
New York, NY, USA: Association for Computing Machinery, 2022, p.
27–41. [Online]. Available: https://doi.org/10.1145/3470496.3527420

[36] M. LeMay, J. Rakshit, S. Deutsch, D. M. Durham, S. Ghosh, A. Nori,
J. Gaur, A. Weiler, S. Sultana, K. Grewal, and S. Subramoney,
“Cryptographic capability computing,” in Proceedings of the 54th
Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). New York, NY, USA: Association for Computing
Machinery, 2021, p. 253–267. [Online]. Available: https://doi.org/10.
1145/3466752.3480076

[37] N. D. Matsakis and F. S. Klock II, “The rust language,” in ACM SIGAda
Ada Letters, vol. 34, no. 3. ACM, 2014, pp. 103–104.

1660

https://github.com/ROCm-Developer-Tools/HIP
AMD EPYC 9004 Series Architecture Overview
https://doi.org/10.1109/SP.2008.30
https://developer.arm.com/-/media/Arm%20Developer%20Community/ PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/ PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://ascon.iaik.tugraz.at/implementations.html
https://ascon.iaik.tugraz.at/implementations.html
https://doi.org/10.1145/1133981.1133999
https://doi.org/10.1145/3243176.3243194
https://doi.org/10.1145/3579371.3589080
https://www.intel.com/content/www/us/en/content-details/671442/5-level-paging-and-5-level-ept-white-paper.html
https://www.intel.com/content/www/us/en/content-details/671442/5-level-paging-and-5-level-ept-white-paper.html
https://www.intel.com/content/www/us/en/content-details/671442/5-level-paging-and-5-level-ept-white-paper.html
https://doi.org/10.1145/3300053.3319418
https://www.khronos.org/registry/OpenCL/specs/opencl-2.0.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-2.0.pdf
https://github.com/gthparch/macsim
https://doi.org/10.1145/3470496.3527420
https://doi.org/10.1145/3466752.3480076
https://doi.org/10.1145/3466752.3480076

[38] S. Nagarakatte, M. M. K. Martin, and S. Zdancewic, “Watchdog: Hard-
ware for safe and secure manual memory management and full memory
safety,” in Proceedings of the 39st Annual International Symposium on
Computer Architecture (ISCA). USA: IEEE Computer Society, 2012,
pp. 189–200.

[39] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “Softbound:
highly compatible and complete spatial memory safety for c,” in
Proceedings of the 30th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’09. New York,
NY, USA: Association for Computing Machinery, 2009, p. 245–258.
[Online]. Available: https://doi.org/10.1145/1542476.1542504

[40] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “Cets:
Compiler enforced temporal safety for c,” in Proceedings of the 2010
International Symposium on Memory Management, ser. ISMM ’10.
New York, NY, USA: Association for Computing Machinery, 2010, pp.
31–40. [Online]. Available: https://doi.org/10.1145/1806651.1806657

[41] H. Naghibijouybari, A. Neupane, Z. Qian, and N. Abu-Ghazaleh,
“Rendered insecure: Gpu side channel attacks are practical,” ser. CCS
’18. New York, NY, USA: Association for Computing Machinery,
2018, p. 2139–2153. [Online]. Available: https://doi.org/10.1145/
3243734.3243831

[42] L. Nai, Y. Xia, I. G. Tanase, H. Kim, and C.-Y. Lin, “Graphbig:
Understanding graph computing in the context of industrial solutions,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC). New York, NY,
USA: Association for Computing Machinery, 2015, pp. 1–12. [Online].
Available: https://doi.org/10.1145/2807591.2807626

[43] N. Nethercote and J. Seward, “Valgrind: A framework for heavyweight
dynamic binary instrumentation,” in Proceedings of the 28th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI). Association for Computing Machinery, 2007, pp.
89–100.

[44] NVIDIA, “Compute sanitizer.” [Online]. Available: https://docs.nvidia.
com/compute-sanitizer/ComputeSanitizer/index.html

[45] NVIDIA., “CUDA Toolkit Documentation,” https://docs.nvidia.com/
cuda/index.html, 2017.

[46] NVIDIA, “Parallel thread execution ISA version 8.5,” 2020. [Online].
Available: https://docs.nvidia.com/cuda/pdf/ptx isa 8.5.pdf

[47] NVIDIA, “Fastertransformer,” https://github.com/NVIDIA/
FasterTransformer/, 2021.

[48] O. Oleksenko, D. Kuvaiskii, P. Bhatotia, P. Felber, and C. Fetzer, “Intel
MPX explained: A cross-layer analysis of the Intel MPX system stack,”
Proceedings of the ACM Measurement and Analysis of Computing
Systems (POMACS), vol. 2, no. 2, pp. 1–30, Jun. 2018.

[49] OpenACC, “Openacc specification,” 2022. [Online]. Available: https:
//www.openacc.org/specification

[50] Oracle, “Hardware-assisted checking using Silicon Secured Memory
(SSM),” 2015. [Online]. Available: https://docs.oracle.com/cd/E37069
01/html/E37085/gphwb.html

[51] S.-O. Park, O. Kwon, Y. Kim, S. K. Cha, and H. Yoon, “Mind control
attack: Undermining deep learning with GPU memory exploitation,”
Computers & Security, vol. 102, p. 102115, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167404820303886

[52] R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-oriented
programming: Systems, languages, and applications,” ACM Transactions
on Information and System Security (TISSEC), vol. 15, no. 1, pp. 1–34,
2012.

[53] H. Sasaki, M. A. Arroyo, M. T. I. Ziad, K. Bhat, K. Sinha, and
S. Sethumadhavan, “Practical byte-granular memory blacklisting using
califorms,” in Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). New York, NY, USA:
Association for Computing Machinery, 2019, pp. 558–571.

[54] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Address-
Sanitizer: A fast address sanity checker,” in Proceedings of the 2012
USENIX Conference on Annual Technical Conference (ATC). USENIX,
2012, pp. 309–318.

[55] R. Sharifi and A. Venkat, “CHEx86: Context-sensitive enforcement of
memory safety via microcode-enabled capabilities,” in Proceedings of
the 47th Annual International Symposium on Computer Architecture
(ISCA), 2020, pp. 762–775.

[56] K. Sinha and S. Sethumadhavan, “Practical memory safety with REST,”
in Proceedings of the 45th Annual International Symposium on Com-
puter Architecture (ISCA). Piscataway, NJ, USA: IEEE Press, 2018,
pp. 600–611.

[57] M. B. Sullivan, M. T. I. Ziad, A. Jaleel, and S. W. Keckler, “Implicit
memory tagging: No-overhead memory safety using alias-free tagged
ecc,” in Proceedings of the 50th Annual International Symposium
on Computer Architecture, ser. ISCA ’23. New York, NY, USA:
Association for Computing Machinery, 2023. [Online]. Available:
https://doi.org/10.1145/3579371.3589102

[58] M. Tarek Ibn Ziad, S. Damani, A. Jaleel, S. W. Keckler,
and M. Stephenson, “Cucatch: A debugging tool for efficiently
catching memory safety violations in cuda applications,” Proc. ACM
Program. Lang., vol. 7, no. PLDI, jun 2023. [Online]. Available:
https://doi.org/10.1145/3591225

[59] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar et al.,
“Llama: Open and efficient foundation language models,” arXiv preprint
arXiv:2302.13971, 2023.

[60] O. Villa, M. Stephenson, D. Nellans, and S. W. Keckler, “NVBit:
A dynamic binary instrumentation framework for nvidia gpus,” in
Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). New York, NY, USA: Association
for Computing Machinery, 2019, pp. 372–383. [Online]. Available:
https://doi.org/10.1145/3352460.3358307

[61] Y. Wang, C. Yang, S. Farrell, T. Kurth, and S. Williams, “Hierarchical
roofline performance analysis for deep learning applications,” CoRR,
vol. abs/2009.05257, 2020. [Online]. Available: https://arxiv.org/abs/
2009.05257

[62] B. Wickman, H. Hu, I. Yun, D. Jang, J. Lim, S. Kashyap, and T. Kim,
“Preventing {Use-After-Free} attacks with fast forward allocation,” in
30th USENIX Security Symposium (USENIX Security 21), 2021, pp.
2453–2470.

[63] J. Woodruff, A. Joannou, H. Xia, A. Fox, R. M. Norton, D. Chisnall,
B. Davis, K. Gudka, N. W. Filardo, A. T. Markettos, M. Roe, P. G.
Neumann, R. N. M. Watson, and S. W. Moore, “CHERI concentrate:
Practical compressed capabilities,” IEEE Transactions on Computers
(TC), vol. 68, no. 10, pp. 1455–1469, 2019.

[64] J. Woodruff, R. N. Watson, D. Chisnall, S. W. Moore, J. Anderson,
B. Davis, B. Laurie, P. G. Neumann, R. Norton, and M. Roe, “The
CHERI capability model: Revisiting RISC in an age of risk,” in
Proceedings of the 41st Annual International Symposium on Computer
Architecture (ISCA). Piscataway, NJ, USA: IEEE Press, 2014, pp. 457–
468.

[65] H. Xia, J. Woodruff, S. Ainsworth, N. W. Filardo, M. Roe, A. Richard-
son, P. Rugg, P. G. Neumann, S. W. Moore, R. N. M. Watson, and
T. M. Jones, “CHERIvoke: Characterising pointer revocation using
CHERI capabilities for temporal memory safety,” in Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). New York, NY, USA: Association for Computing Machinery,
2019, pp. 545–557.

[66] E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Alvarez, and P. Luo,
“Segformer: Simple and efficient design for semantic segmentation
with transformers,” Advances in neural information processing systems,
vol. 34, pp. 12 077–12 090, 2021.

[67] S. Xu, W. Huang, and D. Lie, “In-fat pointer: hardware-assisted tagged-
pointer spatial memory safety defense with subobject granularity pro-
tection,” in Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). New York, NY, USA: Association for Computing
Machinery, 2021, pp. 224–240.

[68] F. Zeng, B. Dong, Y. Zhang, T. Wang, X. Zhang, and Y. Wei, “Motr:
End-to-end multiple-object tracking with transformer,” in European
Conference on Computer Vision (ECCV), 2022.

[69] Y. Zhang, Z. Zhu, W. Zheng, J. Huang, G. Huang, J. Zhou, and J. Lu,
“Beverse: Unified perception and prediction in birds-eye-view for vision-
centric autonomous driving,” arXiv preprint arXiv:2205.09743, 2022.

1661

https://doi.org/10.1145/1542476.1542504
https://doi.org/10.1145/1806651.1806657
https://doi.org/10.1145/3243734.3243831
https://doi.org/10.1145/3243734.3243831
https://doi.org/10.1145/2807591.2807626
https://docs.nvidia.com/compute-sanitizer/ComputeSanitizer/index.html
https://docs.nvidia.com/compute-sanitizer/ComputeSanitizer/index.html
https://docs.nvidia.com/cuda/index.html
https://docs.nvidia.com/cuda/index.html
https://docs.nvidia.com/cuda/pdf/ptx_isa_8.5.pdf
https://github.com/NVIDIA/FasterTransformer/
https://github.com/NVIDIA/FasterTransformer/
https://www.openacc.org/specification
https://www.openacc.org/specification
https://docs.oracle.com/cd/E37069_01/html/E37085/gphwb.html
https://docs.oracle.com/cd/E37069_01/html/E37085/gphwb.html
https://www.sciencedirect.com/science/article/pii/S0167404820303886
https://doi.org/10.1145/3579371.3589102
https://doi.org/10.1145/3591225
https://doi.org/10.1145/3352460.3358307
https://arxiv.org/abs/2009.05257
https://arxiv.org/abs/2009.05257

