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Abstract
Kernel-level sampling is an effective technique for running large-

scale GPU workloads on cycle-level simulators by selecting a rep-

resentative subset of kernels, thereby significantly reducing simu-

lation complexity and runtime. However, in large-scale GPU work-

loads, kernels often exhibit heterogeneous runtime behaviors where

some identical kernels show fluctuating performance, while oth-

ers display multiple performance saturation points. We observe

that the kernel execution time distribution is a powerful signature

for addressing this complexity. By carefully analyzing execution

time distributions, we show that heterogeneous kernels can be ef-

fectively classified and sampled, significantly reducing errors in

sampled simulations.

This paper proposes STEM+ROOT, a fine-grained kernel-level

sampling methodology that enables trustworthy sampled simu-

lation by achieving minimal sampling error. STEM leverages the

distribution of kernel execution times as a signature and applies

statistical techniques to determine optimal sample sizes with tight

error bounds. ROOT is a novel hierarchical clustering framework

built on top of STEM that ensures the sampled kernels faithfully

represent the entire workload in terms of execution time and a wide

range of microarchitectural metrics. STEM achieves high scalabil-

ity for large-scale GPU workloads by significantly reducing offline

profiling overhead for collecting kernel execution times. When eval-

uated on the latest GPU benchmark suite, our proposed method-

ology reduces sampling error by 27.6-81.9× and achieves 7-600×
faster kernel profiling than existing approaches while achieving

comparable performance.
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1 Introduction
Cycle-level simulations are critical in computer architecture re-

search, enabling detailed evaluation of microarchitectural changes,

design space exploration, power and energy estimation, and more

[7, 18, 22]. While widely adopted tools such as AccelSim [15], MG-

PUSim [37], and MacSim [16] support cycle-level GPU simulation,

the growing computational demands of modern machine learning

(ML) workloads have made it increasingly challenging to simulate

them effectively [25]. Our observations show that even a 1-second

large language model (LLM) inference workload can require several

days of simulation, as the simulator must update the microarchitec-

tural state of the GPU at every cycle. Without effective optimization

techniques, this challenge limits the practicality of simulation-based

performance modeling and exacerbates the gap between workloads

used in real GPU deployments and those used in simulators.

Workload sampling is a widely adopted technique for accelerat-

ing cycle-level simulations by reducing the workload size while pre-

serving its unique runtime characteristics. This approach has been

extensively studied in both CPU [3, 9, 33, 43] and GPU [2, 10, 21, 24]

domains. The core idea is to divide the workload into multiple in-

tervals and extract a signature from each interval that captures

its microarchitectural runtime behavior. The simulation sampler

selects a subset of representative intervals, and the simulator extrap-

olates the results to estimate the performance of the full workload.

While selecting less representative intervals can compromise accu-

racy, it enables substantial reductions in simulation time compared

to running the full workload.
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Figure 1: Execution time histograms of repeated GPU kernel
calls from ML workloads (CASIO benchmark suite). Kernel
names shown above each plot. Execution times of repeatedly
executed kernels show runtime heterogeneity.

Kernel-level sampling is widely used in GPU simulation to im-

prove scalability. Still, the sampling error can be significant if the

kernel signatures used to select representative kernels fail to cap-

ture their runtime behavior. Previous approaches have relied on

various instruction-level and control-flow-related metrics as kernel

signatures [2, 10, 21, 24]. Although these metrics capture the pro-

gram characteristics related to control flow graphs or static code

features, we observe that they often fail to capture input-dependent

characteristics at runtime, which are frequently a more significant

source of variation in modern GPU applications. For example, even

the same GPU kernel, such as gemm, can be invoked repeatedly in a

fixed compute graph but show significantly varying performance

due to microarchitectural effects. Although kernel code and control

flow remain constant, input sparsity, tensor layout, memory align-

ment, and cache locality can significantly affect execution efficiency.

This variability highlights the need for a new kernel signature to

differentiate these performance-influencing factors.

We observe that ML workloads [6] on GPUs involve a substantial

number of repeated kernel invocations [27, 30] due to extensive

batching and layer-level iterations. However, the same kernel of-

ten exhibits heterogeneous runtime behaviors across invocations,

which poses a significant challenge for kernel-level sampling since

the samples must capture all the different ways the kernel behaves

during the workload. Surprisingly, we discovered that the distribu-

tions of kernel execution times offer powerful insights in categoriz-

ing these differences, enabling more accurate sampling strategies

when used. For instance, if the execution time distribution of a ker-

nel exhibits distinct peaks, this indicates the presence of multiple

performance saturations–each peak reflecting the kernel’s opera-

tion in a different context within a workload. In such cases, separate

samples must be taken from each peak to capture these distinct

behaviors accurately. Conversely, when the same kernel exhibits a

large standard deviation in execution time, it indicates significant

runtime variability–often caused by its memory-bound nature and

fluctuating memory latencies. In such cases, accurate simulation re-

quires more samples to fully capture the performance variability in

these scenarios, ensuring statistically confident simulation results.

Based on these observations, we propose STEM+ROOT: a kernel-

sampling technique that leverages the execution time distribution

to extract microarchitectural insights from kernels and perform

fine-grained sampling. Our approach uses hierarchical clustering

and statistical error modeling to fully capture the runtime hetero-

geneity shown in GPU kernel execution profiles, thereby accurately
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Figure 2: Motivation on execution-time-based kernel sam-
pling. Kernels show wide variability and/or multiple peaks,
requiring both fine-grained clustering and sampling for ac-
curate kernel sampling.

characterizing the overall behavior of the workload for sampled

simulation. STEM employs statistical error modeling to charac-

terize each kernel’s runtime behavior and determine the optimal

sample size that balances accuracy and efficiency. ROOT refines

the process by employing fine-grained hierarchical clustering to

determine the optimal number of kernel clusters, selecting repre-

sentative kernels that mirror the full workload’s behavior in terms

of both execution time and microarchitectural metrics. Together,

this approach delivers significant simulation acceleration while

minimizing the sampling error. Furthermore, because execution

time data can be gathered with a lightweight profiler [1, 29] and a

near-linear algorithm, STEM scales effectively to large-scale work-

loads withmillions of kernel invocations. Our evaluation onGPGPU

benchmarks [4], ML benchmarks [6], and large-scale LLM/MLwork-

loads [12] demonstrates that STEM+ROOT significantly reduces

sampling error compared to prior methods, while achieving com-

parable speedups with substantially lower profiling overhead.

2 Observation and Motivation
Our work leverages the execution time distribution of GPU kernels

to enable accurate kernel-level sampling. This section describes our

observations and motivations on how execution time distributions

provide valuable insights for kernel-level sampling and why we

can broadly generalize this observation across various applications.

2.1 Heterogeneous runtime behavior of
repeated GPU kernels

Observation 1: In large-scale GPUworkloads with a massive number

of repeated kernel invocations, identical GPU kernels often exhibit

substantial variation in execution time across invocations. Figure 1

shows execution time histograms of several kernels sampled from

ML workloads in CASIO suite [6]. Some histograms display widely

or narrowly spread distributions, while others exhibit multiple

distinct peaks. This variability is widespread in modern GPU work-

loads compiled from high-level frameworks such as PyTorch [30],

where compute graphs translate into numerous kernel launches

from a relatively small set of kernel types. Even for kernels like

sgemm or winograd, launched with identical code and consistent

parameters (e.g., grid size, block size, and instruction count), run-

time behavior can vary greatly depending on the context that uses

the kernel and the specific input data it processes.

This runtime heterogeneity arises because the same kernel (e.g.,

sgemm) is invoked repeatedly in different contexts as the ML frame-

works translate compute graphs into microarchitecture-specific

GPU kernels. Although the kernel logic and launch configurations

remain unchanged, each invocation often operates on other types
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Figure 3: Overview of the proposed methodology. ROOT ap-
plies hierarchical clustering on the same kernels by execu-
tion time to differentiate kernels with similar runtime be-
haviors. STEM selects an adaptive number of representative
samples from each cluster.

of data (e.g., activations, weights, or biases in neural networks)

residing in regions such as global/shared memory or L1/L2 cache.

These differences in input characteristics and memory locality

lead to diverse execution behaviors. Moreover, as shown in the

sgemm_128x64 histogram in Figure 1, the presence of multiple nar-

row, distinct performance peaks suggests that the program uses

the kernel in at least two different contexts within the workload.

In such cases, these distinct behaviors should be treated separately

during the sampled simulation to ensure accuracy. However, rely-

ing solely on code-level analysis makes it difficult to capture this

heterogeneity, as they struggle to account for dynamic factors like

memory access patterns, input data characteristics, and runtime

dependencies that vary based on the kernel’s execution context.

2.2 Extracting kernel’s runtime diversity with
execution time distributions

Observation 2: Kernel execution time distribution is a powerful

signature that can effectively reveal such heterogeneous runtime

characteristics of kernels. The execution time reflects its usage con-

text within a given workload, enabling us to differentiate identical

kernels operating under different conditions. For example, as shown

in Figure 1, the three clearly separated peaks in the histogram sug-

gest that the program uses the same bn_fw_inf kernel in three

different runtime contexts through tens of thousands of repeated

kernel calls. This reuse indicates that the kernel shows different

execution time, likely due to distinct input or usage patterns within

its workload context. By applying clustering methods to group

kernels in each peak, we can easily classify the kernel’s usage and

take separate samples from each peak for accurate kernel-level

sampling.

Moreover, statistical measures such as standard deviation offer

valuable insights into kernel performance variability. For example,

kernels with wide execution time distributions (e.g. max_pool in

Figure 1) exhibit significant runtime jitter. This fluctuation is often

due to the kernel’s memory-bound nature and its sensitivity to mi-

croarchitectural factors. A larger sample size is required to capture

the full range of variability and ensure statistical confidence in sam-

pled simulation results. In contrast, kernels like sgemm_128x64_nn,
which show narrow peaks, suggest more stable performance. Fewer

samples per peak are sufficient for such kernels to maintain high

accuracy for sampled simulation. Note that maxpool and GEMM

operations are generally known to be memory-bound and compute-

bound in convolutional neural network (CNN) workloads.

Figure 2 summarizes our key insight on leveraging the execution

time distributions to perform fine-grained clustering and sampling.

As execution time profiles can simultaneously exhibit multiple per-

formance peaks and large standard deviations, a solution that can

address both dimensions is necessary. This runtime heterogeneity

of kernels motivates the design of STEM and ROOT, where ROOT

clusters kernels based on execution profiles, and STEM dynamically

adjusts sample sizes according to observed runtime variability.

2.3 Using execution time as a kernel signature
for robust and accurate sampling

We claim kernel execution time distributions and their derived sta-

tistical measures are robust signatures for kernel sampling, even

across different GPU microarchitectures. While execution time is

inherently hardware-dependent, the distribution of execution times

yields meaningful, relatively hardware-agnostic insights. Statistical

features such as standard deviation, coefficient of variation (CoV),

and the number of peaks (as shown in Figure 1) capture important

behavioral properties, such as memory or compute intensity, work-

load phase behavior, or input-dependent memory access patterns

that are not tied to the absolute timing values.

Our work leverages these distribution-based features to guide

sampling decisions, making it effective even when the hardware

changes. Instead of comparing kernels solely based on their static

information, our algorithm adaptively increases the sample size for
kernels that are more sensitive to microarchitectural changes (e.g.,

memory-bound kernels) based on their runtime statistics, making it

more likely to capture diverse runtime behaviors even on new hard-

ware or a system. We evaluate this claim in Sec. 5.4 by simulating

design space exploration across architectures, and we observe con-

sistently low error rates, often outperforming prior approaches that

use microarchitecture-independent signatures. In Sec. 6.1, while

we discuss the potential limitations of using execution times for

kernel sampling, we argue that exploiting these statistics offers

high achievements in robustness of our approach.

The rapid evolution of GPU architectures makes execution time

a more practical sampling metric than unstable low-level parame-

ters. In contrast to stable CPU ISAs, proprietary GPU ISAs change

significantly with each generation, rendering kernel signatures

based on instruction or basic-block counts unreliable. For example,

features introduced in NVIDIA’s Volta architecture, like Tensor

Cores (for FP8/BF16) [23] and warp-level primitives (vote, shfl)
[26, 32], can cause the same high-level source code to compile into
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drastically different machine code with new performance behav-

iors. Furthermore, recent studies show that GPUs differ in inject-

ing register dependency chains, further undermining architectural

consistency [11]. Consequently, execution time provides a more

versatile and dependable signature for kernels.

3 STEM and ROOT methodology
STEM+ROOT is our kernel-level sampling solution that directly

leverages execution time data to perform fine-grained clustering

and sampling. Figure 3 illustrates an overview of our methodology.

First, kernel calls are grouped by names, as most large-scale GPU

workloads typically consist of repetitive invocations of the same

kernel types. ROOT performs fine-grained hierarchical clustering to

classify kernels with different runtime behaviors, as Figure 1 shows.

STEM then applies precise statistical error modeling to determine

the optimal number of samples from each cluster, ensuring minimal

sampling error while achieving substantial simulation speedups.

A key takeaway of our approach is that it can provide theoretical

error bounds, offering both transparency and predictable accuracy

for sampled simulation results. Since STEM and ROOT are tightly

integrated, we describe the core methodology of STEM and subse-

quently illustrate how ROOT leverages it to perform fine-grained

clustering in the following subsections.

3.1 Kernel-level sampling for GPU workloads
A GPU workload consists of many kernel invocations, often with

repeated executions of the same kernels. Running a full simula-
tion (simulating every kernel invocation in the workload without

sampling) can be prohibitively time-consuming. To address this,

kernel-level sampling selects a subset of kernel calls to simulate, re-

sulting in a so-called "sampled" simulation. The goal of the sampled

simulation is to carefully choose kernels that capture the runtime

characteristics of most workload phases, while minimizing the

length of the sampled simulation to reduce overall time.

After the sampled simulation, the simulator can estimate the

total execution time (execution time of the full simulation) by using

a weighted sum. Specifically, it computes the total time as the sum

of the execution times of the sampled kernels, each multiplied by

a weight corresponding to the number of corresponding kernel

invocations in the full workload that the sample represents.

Let 𝑡∗ denote the ground-truth total execution time of the full

simulation, which is the valuewe aim to estimate. Let 𝑡
total

represent

the estimated execution time obtained from the sampled simulation,

computed as a weighted sum over the sampled kernels. We define

the sampling error 𝑒 between the estimated and ground-truth

total execution times as follows:

𝑒 ≡
���� 𝑡total − 𝑡∗𝑡∗

���� × 100(%). (1)

We use this sampling error to quantify the accuracy of the sam-

pled simulation relative to the full simulation.

3.2 STEM: Statistical Error Modeling for GPU
simulation

STEM is our statistical error model that leverages the Central Limit

Theorem (CLT) and KKT-solver to obtain the optimal sample sizes

for a set of kernels. The summary of STEM is shown in the upper

part of Figure 4. STEM demonstrates that leveraging execution time

distribution for workload sampling provides significant advantages

in terms of accuracy (Sec. 5.1), theoretical error bounds (Sec. 3.4),

and low profiling overhead (Sec. 5.6).

We begin with the simplest case, where 𝐶 is a set of invocations

of the same kernel. The objective is to select a subset of these invo-

cations for sampled simulation, but the key question is how many

samples are required. Specifically, we aim to determine the minimal

sample size𝑚 that ensures the sampling error remains within a

bound of 𝜖 . The error bound 𝜖 is a tunable parameter that works

as a desired upper bound on the theoretical sampling error, and

we set this to values such as 1% or 5%. According to the Central

Limit Theorem (CLT), the sample mean 𝑋 will always follow a nor-

mal distribution, regardless of the original distribution of execution
times in 𝐶 . This powerful result holds under two key assumptions:

(1) the sample size is sufficiently large (rule of thumb is𝑚 ≥ 30),

and (2) the samples are independent and identically distributed

(i.i.d.) [38]. Fortunately, both conditions are satisfied in large-scale

GPU workloads. The massive degree of kernel invocations ensures

the first condition in most workloads, and using random sampling

with replacement satisfies the i.i.d. assumption. As a result, the

sample mean 𝑋 of kernel execution times follows a normal distri-

bution: 𝑋 ∼ N(𝜇, 𝜎2/𝑚), where 𝜇 and 𝜎2
denote the true mean and

variance of kernel execution times in 𝐶 [17].

Kernel-level sampling aims to estimate the total execution time

of GPU kernels using only a subset of sampled executions [20]. Our

estimation for the total execution time is 𝑡
total

= |𝐶 | ·𝑋 , and its true
value is 𝑡∗ = |𝐶 | · 𝜇. The sampling error, which is the error between

𝑡
total

and 𝑡∗ is as follows when the given confidence level is 1 − 𝛼 :

𝑒 =

���� 𝑡total − 𝑡∗𝑡∗

���� = ���� |𝐶 |𝑋 − |𝐶 |𝜇
|𝐶 |𝜇

���� =
�������
𝜇 ±

𝑧
1− 𝛼

2

𝜎
√
𝑚

− 𝜇

𝜇

������� =
𝑧

1− 𝛼
2

𝜎

𝜇
√
𝑚

. (2)

𝑧
1−𝛼/2

is a standard score when the confidence interval is 1 − 𝛼 ,
and this value becomes 1.96 on 95% confidence level.

Therefore, we can obtain the sample size𝑚 ensuring error smaller

than the bound (𝑒 ≤ 𝜖) as follows, with a ceiling function for en-

suring the𝑚 is an integer:

𝑚 =

⌈(
𝑧

1−𝛼/2

𝜖

𝜎

𝜇

)
2

⌉
. (3)

This equation represents the statistical error model for the sim-

plest scenario, where we consider a single set of kernels. A similar

analysis can be found in prior statistical sampling studies [5, 43].

The beauty of STEM lies in its versatility, as it can be applied

to any set of kernels with arbitrary distributions if the 𝜇 and the

𝜎 of the kernels are known. For example, no matter whether a

kernel exhibits a narrow or wide execution time histogram, the

same STEM equation (Eq. (3)) can be used to determine the optimal

sample size𝑚.

Equation (3) intuitively demonstrates that by leveraging the

mean (𝜇) and standard deviation (𝜎) of kernel execution times, one

can derive an optimal sample size. Specifically, kernels with wide
execution time distributions will have high 𝜎/𝜇 values, and this will

hint STEM to determine larger sample sizes. This increased sample

size lets the sampled simulation capture most of the diverse run-

time behaviors, even if a different microarchitecture is used during
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Figure 4: Overview of STEM (top) and ROOT (bottom). STEM estimates simulation error fromkernel execution time distributions
(using the sample mean, 𝑋 ) and employs a KKT solver to minimize the sample size per cluster while meeting error bounds.
ROOT leverages STEM to determine whether splitting kernel clusters will lead to additional simulation time savings.

the sampled simulation, thereby enhancing both the accuracy and

effectiveness of kernel-level sampling.

We use the CoV (coefficient of variation; 𝜎/𝜇) obtained from

kernel-level profilers [1, 29], as a proxy for the actual value, which

is otherwise unobtainable without full simulation. This CoV repre-

sents the relative width of the execution time distribution. Although

the exact values of 𝜎 and 𝜇 may vary across different simulation

settings, the CoV (their ratio) effectively reflects a kernel’s inherent

runtime behavior, such as whether it is memory-bound or suscepti-

ble to hardware changes.

3.3 Optimizing STEM for multiple clusters
In real-world GPU workloads, multiple kernel clusters appear due

to the 1) usage of different kernels and 2) cases where the same

kernel often shows multiple peaks in its execution time distribution.

As a result, sampling typically requires selecting representatives

from several clusters at once. We now consider optimizing STEM

for such multi-cluster cases. While one could apply Eq. (3) indepen-

dently to each cluster, this approach imposes strict error bounds

on every cluster, often resulting in a larger total sample size than

necessary. To address this, we introduce an additional optimization

that jointly considers all clusters. This optimization allows STEM

to reduce the required sample size by 2–3× on average, enabling

faster simulations without compromising accuracy.

Let a set of kernel clusters as {𝐶0,𝐶1, ...,𝐶𝑘−1
} and denote 𝑁𝑖 =

|𝐶𝑖 | for convenience. Assume we sample𝑚0,𝑚1, ...,𝑚𝑘−1
number

of kernels from each corresponding cluster. Then, for any 𝑖 in the

range,𝐶𝑖 ’s estimated execution time, 𝑡𝑖 , can be obtained as 𝑡𝑖 = 𝑁𝑖𝑋𝑖
where𝑋𝑖 ∼ N(𝜇𝑖 , 𝜎2

𝑖
/𝑚𝑖 ) by the CLT. Using the linear combination

rule of normal random variables [35], the estimation for the total

execution time 𝑡 can be expressed as

𝑡 =

𝑘−1∑︁
𝑖=0

𝑡𝑖 =
∑︁
𝑖

𝑁𝑖𝑋𝑖 ∼ N(
∑︁
𝑖

𝑁𝑖𝜇𝑖 ,
∑︁
𝑖

𝑁 2

𝑖

𝜎2

𝑖

𝑚𝑖
) = N(𝜇̃, 𝜎̃2), (4)

where 𝜇̃ ≡ ∑
𝑖 𝑁𝑖𝜇𝑖 and 𝜎̃ ≡ ∑

𝑖 𝑁
2

𝑖
𝜎2

𝑖
/𝑚𝑖 are used for brevity.

By using the same error equation as Eq. (2) [43], the error bound

inequality 𝑒 ≤ 𝜖 becomes∑︁
𝑖

𝑁 2

𝑖

𝜎2

𝑖

𝑚𝑖
≤

(
𝜖

𝑧
1−𝛼/2

∑︁
𝑖

𝑁𝑖𝜇𝑖

)
2

. (5)

Since the goal of STEM is to minimize simulation time, we define

𝜏 as the total execution time of the samples, a proxy to the total

simulation time. The optimal 𝜏 that satisfies the error constraint 𝑒 ≤
𝜖 can be obtained by solving the following non-linear minimization

problem using a KKT solver.

Problem 1.

minimize

𝑚𝑖

𝜏 =
∑︁
𝑖

𝑚𝑖𝜇𝑖

subject to

∑︁
𝑖

𝑁 2

𝑖

𝜎2

𝑖

𝑚𝑖
≤

(
𝜖

𝑧
1−𝛼/2

∑︁
𝑖

𝑁𝑖𝜇𝑖

)
2

and 𝑚𝑖 > 0 for ∀𝑖 ∈ {0, ..., 𝑘 − 1}.

Solution. Let 𝑎𝑖 ≡ 𝜇𝑖 , 𝑏𝑖 ≡ 𝑁 2

𝑖
𝜎2

𝑖
, and 𝑐 ≡ (𝜖∑

𝑖 𝑁𝑖𝜇𝑖/𝑧1−𝛼/2
)2

for

brevity. We apply the Karush-Kuhn-Tucker (KKT) conditions to

obtain the following solution:

𝑚𝑖 =


√︁∑

𝑗 𝑎 𝑗𝑏 𝑗

𝑐
·

√︄
𝑏𝑖

𝑎𝑖

 for ∀𝑖 ∈ {0, ..., 𝑘 − 1}, (6)

where the ceiling function ensures integer𝑚𝑖 values, with minor

sub-optimality. The detailed solution is in Sec. 9.1. □
Using this KKT Solver, we determine the optimal sample sizes

for a given set of clusters. We define the solution in Equation (6) as

STEM, an extended version of Equation (3) optimized for multiple

kernel clusters.

3.4 ROOT: Fine-grained hierarchical GPU
kernel clustering

ROOT is our novel fine-grained GPU kernel sampling methodology

built upon STEM. Its primary objective is to differentiate distinct ex-

ecution time peaks in invocations of identical kernels as illustrated

in Figure 1 and 2. For instance, consider the sgemm_128x64_nn ker-
nel shown in Figure 1. If one were to directly compute the optimal

sample size using STEM over the entire execution time distribution,

the resulting sample size would be overly large due to the high stan-

dard deviation introduced by multiple distinct peaks. However, by

partitioning the cluster such that each cluster contains only a single

peak, the standard deviation within each cluster is significantly
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sampled_trace
Kernel ID  Time (ns)      Name         GridDim
--------------------------------------------------------
   0     10.5          sgemm     (128,128,1)
   1                3.1          maxpool    (64, 64, 16)
   2               11.2          sgemm     (128,128,1)
   3                3.4          maxpool    (64, 64, 16)
   4               10.8          sgemm     (128,128,1)
   5                7.5            bn_fw      (16, 64, 16)
 

...

 Sampled      Cluster         Kernels 
kernel IDs        size           in cluster
---------------------------------------------
      [2, 6]            330        [0, 2, 4, 6, ...]
        [3]               475        [1, 3, 7, 9, ...]
[5, 12, 24]         95         [5, 12, 16, ...]
       [95]            1293       [8, 54, 76, ...]
 

Kernel traces
-----------------
kernel2.raw
kernel3.raw
kernel5.raw
kernel6.raw
kernel12.raw... ...

Figure 5: End-to-end pipeline of STEM’s sampled simulation framework. Kernel profiler extracts execution time per kernel,
and STEM+ROOT creates sampling information based on it. GPU tracer and simulator use the information to run a sampled
simulation.

...

...

...

...

...
...

...
...

...
......

...

...
...

...

Kernel B

Kernel A

Kernel C

Execution Time

...

ROOT
No more time 
savings (τold < τnew)

:

Figure 6: ROOT’s recursive methodology. ROOT hierarchi-
cally splits kernel clusters until further simulation time sav-
ings are no longer possible.

reduced. Consequently, the optimal sample size decreases, leading

to faster sampled simulation while maintaining high accuracy.

A key challenge in this approach is that the number of peaks (or

runtime contexts) is unknown in advance, making it challenging to

apply clustering methods like 𝑘-means as they require the number

of clusters as input. To overcome this, ROOT applies clustering

recursively: it continues splitting clusters until further splits no

longer yield meaningful simulation time savings. This hierarchical

process ensures we isolate kernels with similar execution behavior

while avoiding unnecessary over-partitioning. Figure 6 shows an

example of ROOT performing hierarchical kernel clustering.

The bottom part of Figure 4 illustrates the branching condition

used in ROOT’s recursive algorithm. Given a kernel cluster 𝐶 , we

apply a clustering method (e.g., 𝑘-means) to divide it into subclus-

ters𝐶0,𝐶1, . . . ,𝐶𝑘−1
. ROOT then uses STEM (Eq. 6) to estimate the

simulation time before and after the split and compares the results.

If sampling from the new subclusters 𝐶0, . . . ,𝐶𝑘−1
reduces total

simulation time compared to using the old cluster𝐶 , ROOT accepts

the split. This decision is made by comparing the total simulated

time before and after the split, as shown in Equations (7) and (8).

The number of subclusters 𝑘 can be determined arbitrarily, but we

empirically observe that any number above 2 works well.

𝜏𝑜𝑙𝑑 =𝑚𝑋 = ⌈(𝑧
1−𝛼/2

𝜎/𝜇𝜖)2⌉ · 𝑋 (7)

𝜏𝑛𝑒𝑤 =
∑︁
𝑖

𝑚𝑖𝑋𝑖 =
∑︁
𝑖


√︁∑

𝑗 𝑎 𝑗𝑏 𝑗

𝑐
·

√︄
𝑏𝑖

𝑎𝑖

 · 𝑋𝑖 (8)

If 𝜏𝑜𝑙𝑑 > 𝜏𝑛𝑒𝑤 , partitioning the old cluster 𝐶 into new multiple

subclusters {𝐶0, . . . ,𝐶𝑘−1
} will reduce the overall simulation time.

We recursively apply this decision process to achieve fine-grained

kernel clustering with bounded error.

The following proves that any union of error-bounded cluster

sets also maintains error-boundedness. Applying Theorem 3.1 to

each cluster set ensures that the total sampling error across all

clusters remains bounded by 𝜖 .

Theorem 3.1. Let 𝑆 (0) = {𝐶 (0)
0
,𝐶

(0)
1
, · · · }, 𝑆 (1) = {𝐶 (1)

0
, · · · },

· · · , 𝑆 (𝑁−1) = {𝐶 (𝑁−1)
0

, · · · } be 𝑁 sets of kernel clusters where the
corresponding sampling error of each cluster set is bounded by 𝜖 with
sample sizes {𝑚 ( 𝑗 )

𝑖
} for 𝑆 ( 𝑗 ) . Then, the same set of sample sizes gives

a bounded error for the union of every cluster set
⋃𝑁−1

𝑗=0
𝑆 ( 𝑗 ) .

Proof. The proof is in Appendix 9.2. □

3.5 Running the sampled simulation
Once ROOT completes clustering the kernel invocations into sub-

clusters, we sample kernels with sample sizes𝑚𝑖 determined by

STEM. We use random sampling with replacement to select the

samples from each subcluster to satisfy the i.i.d. conditions required

by the CLT. We compute the sample sizes {𝑚𝑖 } for each subclus-

ter according to Equations (3) and (6), ensuring that the sampling

process adheres to the desired error bound 𝜖 .

Figure 5 describes the end-to-end pipeline of our kernel-level

sampled simulation framework and illustrates how our method

integrates with existing GPU simulators. The process begins with

a GPU kernel profiler [1, 29] that collects execution time informa-

tion for each kernel invocation. Our algorithm uses this data to

select the representative kernel samples and determines how many

kernel invocations each sample should represent. The generated

sampling information is then passed to a GPU simulator of choice

[15, 16] along with the corresponding code or trace of the workload.

Traces are generated only for the sampled kernels for trace-based

simulators, significantly reducing trace generation overhead. We

can think of this procedure as embedding the sampling information

into the workload code or trace. The simulator uses the sampling

information to compute a weighted sum of the sampled execution

times, enabling accurate estimation of the total simulation time.
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Table 1: Comparison of previous kernel-sampling methods.

Sampling Methods PKA [2] Sieve [24] Photon [21] STEM+ROOT (ours)

Kernel signature 12 instr. level metrics

Kernel name &

Num. of instrs

GPU Basic Block Vector (BBV)

Kernel name &

Exe. time distribution

Clustering 𝑘-means

Hand-tuned,

based on CoV (𝜎/𝜇) Find a kernel with

similar BBV and #warps

(95% threshold)

Fine-grained hierarchical (ROOT)

Kernel sample size

Single per cluster,

first chronological

Single per cluster,

first chronological

Adaptive sampling with statistically

determined sample size (STEM)

Profiling granularity

Instr. count and

statistics per warp
Instr. count per warp Basic block count per warp Execution time per kernel

Scalability for

large-scale workloads

Very low Low Low High

Table 2:Workloads used in evaluation of STEM and baselines.

Benchmark

Suites

Num. of

workloads

Avg. Execution

time (sec)*

Avg. number of

kernel calls

Rodinia (GPGPU) [4] 13 6.46 1403

CASIO (ML) [6] 11 7.26 64279

Huggingface

(LLM/ML) [12]

6 1835.27 11599870

*The execution time of workloads is measured on the RTX 2080 GPU.

4 Evaluation
This section presents the evaluation results for STEM+ROOT, in-

cluding its accuracy, performance, error bound sensitivity, valida-

tion on microarchitectural metrics, profiling overhead, and analyses

various hardware on simulators. From this point forward, we will

refer to STEM+ROOT as STEM for the sake of brevity.

5 Experiment Setup
Experiment Environment.Our experiments are on various GPUs,

including the NVIDIA H100, H200, and RTX 2080. We used RTX

2080 for profiling experiments, as prior sampling techniques re-

quired over a month of exclusive system use, and it was the only

machine available for that duration. We used Nsight Systems for

kernel-level profiling, but our method applies to any GPU system

that supports similar kernel profilers, such as NVIDIA, AMD, and

Intel GPUs, or TPU/NPUs with similar support [1, 13, 14, 29].

Benchmark Suites.We used three benchmark suites to evaluate

our method in terms of speedup, accuracy, and scalability. We used

Rodinia GPU Benchmark Suite 3.1 [4] for small-scale GPGPU work-

loads (input config. from the baseline work [24]), CASIO DL Suite

[6] for state-of-the-art ML applications. Although some workloads

in the Rodinia suite have a small number of kernel calls, we present

it as a reference for irregular and diverse GPGPU/HPC workloads.

We used a set of ML/LLMworkloads for large-scale workloads using

models from the Huggingface repository [12]. The list of models

includes Bert, Bloom, DeiT, Gemma, GPT-2, and ResNet-50, and the
workloads involve generating 1000+ sentences or classifying 7,000+

images. We used CUDA version 12.6.

Table 2 shows the summary of workloads, including the execu-

tion time and number of kernel calls. The three suites will demon-

strate our method’s effectiveness across applications from small-

scale (e.g., Rodinia, input size 1MB to 1000MB) to large-scale ML

models (e.g., HuggingFace, model size 25M to 2B parameters). Ta-

ble 2 highlights the massive number of kernel calls in the CASIO

and HuggingFace suites, where we expect STEM to leverage its

statistical and fine-grained capabilities fully.

Speedup and error of sampled simulations.Wedefine speedup
as the ratio of the cycle count of the full workload to that of the

sampled workload. We compute sampling error using the definition

shown in Eq. (1), comparing the full workload’s cycle count and

the estimate obtained from the sampled workload. In cases where

running the full workload on a simulator was infeasible, we used

cycle counts from machine profiles to compute the speedup and

sampling error of the sampled simulations. In these experiments,

we assume a perfect warmup of the GPU cache and GPU microar-

chitectural states, as we measure the cycle counts on real hardware,

and direct manipulation of the hardware is infeasible. See Sec. 6.2

for further discussion of how we acknowledge this limitation and

estimate its potential impact.

Baseline Methods. As summarized in Table 1, we compare

STEM against three kernel sampling baselines: PKA [2], Sieve

[24], and Photon [21]. We used Nsight Compute (NCU) [28] to

gather the instruction-level metrics required for PKA, and NVBit

(NVIDIA Binary Instrumentation Tool) [40] to collect instruction

counts for Sieve. For Photon, we built a BBV profiler based on their

instr_count_bb example to extract GPU BBVs for each kernel,

enabling compatibility with both trace-based simulators [15, 16]

and execution-driven simulators [37].

Instruction-level profiling per warp introduces substantial perfor-

mance overhead, making methods like PKA and Sieve impractical

for large workloads, as we expect them to take months to complete

profiling Huggingface workloads. Moreover, Photon requires ker-

nel processing time that grows quadratically with the number of

kernel calls, making it infeasible for such workloads with over a

million kernels. We analyze and discuss the overhead of previous

sampling methods in more detail in Sec. 5.6. Therefore, we set uni-

form random sampling, selecting each kernel independently with a

0.1% probability, as a baseline for HuggingFace workloads.

Replication & Hyperparameters.We repeated every experi-

ment 10 times and averaged the results to minimize the randomness.

We use the harmonic mean for speedup [8], while we use the arith-

metic mean for the error. We set the error bound 𝜖 to 0.05 and used

𝑘 = 2 for k-means clustering in each of ROOT’s iterative steps.

We use a z-score of 1.96 for 𝑧
1−𝛼/2

(95% confidence level). Sec. 5.3

discusses the sensitivity of the error bound 𝜖 .

5.1 Speedup and Error validation
Table 3 summarizes the average speedup and sampling error achieved

by the four sampling methods across the workloads. Figures 7 and

8 present the speedup and error results. Scatter plot of CASIO and
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ML Workload (Casio Suite)GPGPU Workload (Rodinia Suite)

Figure 7: Speedup comparison of four kernel sampling methods on the Rodinia and CASIO benchmark suites. We present the
speedup in log-scale; the average speedup is on the far right.

ML Workload (Casio Suite)GPGPU Workload (Rodinia Suite)

Figure 8: Sampling error comparison of four sampling methods on Rodinia and CASIO suites sampling methods. STEM shows
near-zero sampling error on the CASIO suite as it leverages the massive number of kernel calls and their execution time
distributions.

Table 3: Average speedup (×) and error (%) of 5 kernel sam-
pling methods on 3 GPU benchmark suites. Some values not
available due to excessive overhead (details in Sec. 5.6).

Methods

Rodinia

(GPGPU)

CASIO (ML)

Huggingface

(LLM & ML)

Speedup

(×)
Error

(%)

Speedup

(×)
Error

(%)

Speedup

(×)
Error

(%)

Random* 7.09 26.67 984.87 28.39 1004.97 2.40

PKA 8.35 34.85 1425.01 29.26 N/A (Profiling overhead)**

Sieve 2.62 6.63 391.09 23.75 N/A (Profiling overhead)**

Photon 2.84 2.71 168.61 9.85 N/A (BBV process overhead)**

STEM 3.00 0.93 109.595 0.36 31719.057 0.57
*Uniform random; We sample 10% and 0.1% of kernels for Rodinia and

CASIO, respectively.

**Profiling and BBV processing overhead is estimated at up to 78.68 days.

Huggingface speedup/error results are shown in Figure 9, where

our method is only compared with random sampling. As a full sim-

ulation was intractable for most workloads, we used the profiler’s

cycle counts to calculate speedup and error of sampling methods.

Rodinia Suite. The speedup and error evaluation results are

shown in the first column of Table 3. STEM significantly outper-

forms prior methods in reducing sampled simulation error. While

kernel sampling methods generally yield lower speedups on the

Rodinia suite, STEM effectively balances speedup and error. STEM

achieves speedups comparable to Sieve and Photon while reducing

the error from 2–6% to below 1%.

Results on irregular workloads from the Rodinia suite demon-

strate the robustness of each kernel sampling method. For instance,

in gaussian, the same kernel is invoked repeatedly for Gaussian

elimination, but the number of executed instructions decreases

steadily, approaching zero in later iterations. In heartwall, while
the same kernel runs multiple times, the first invocation is much

shorter; subsequent invocations execute roughly 1500× more in-

structions. Similarly, in pf_float/naive, certain kernels are up

to 100× longer than others. For workloads like heartwall and

pf_naive, PKA and Sieve struggle to distinguish kernels with dras-

tically different execution times. For example, sampling only the

first short kernel in heartwall leads to a severe underestimation

of total execution time, resulting in a massive 99.9% error. Likewise,

in bfs and gaussian, where kernel execution times vary widely,

PKA and Sieve often sample too few kernels, leading to significant

total time estimation errors.

For gaussian and heartwall workloads, we manually hand-

tuned PKA and Sieve to randomly sample kernels instead of the

first-chronological kernel, and the error dropped significantly (e.g.,

heartwall: from 99.9% to 37.69% and 5.27% for PKA and Sieve).

Although we use the improved results in our evaluation table and

figures, this tuning must be done per workload, highlighting a key

limitation of these approaches. In contrast, STEM automatically

adapts its sample size based on the runtime variability of profiled

kernels. STEM’s adaptivity leads to substantially lower error with

only amodest increase in simulation cost, achieving a better tradeoff

between accuracy and speedup without hand-tuning. We discuss

this tradeoff further in Section 5.3.

CASIO Suite: A Massive number of kernel calls involved in

the CASIO suite enabled STEM to leverage its statistical modeling

capabilities fully. PKA and Sieve, which sample only one or a few

kernels per cluster, suffer from significant sampling errors. Where

Photon reduces error from ∼30% to 9.85% with a slight sacrifice in

speedup, the remaining error accounts for the BBVs’ incapacity to
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Figure 9: Scatter plot showing the speedup (log scale) and
error (%) of different kernel sampling methods on CASIO
suite (left) and Huggingface suite (right).

fully distinguish kernels executed in different contexts or with var-

ious inputs. STEM achieves a significantly lower error of just 0.36%

while maintaining a 109.60× speedup, representing a 27.6–81.89×
reduction in error compared to previous methods. Furthermore, by

tuning the hyperparameter (i.e., the error bound 𝜖), it can achieve

additional speedup. Our sensitivity analysis in Sec. 5.3 shows that

we can reach a speedup of 172.30× with only 0.80% error.

Like Rodinia, we tuned Sieve to use random sampling for the

ssdrn34-infer and unet-infer/train workloads, where first-

chronological sampling resulted in significant errors. For CASIO

workloads, we turned off Sieve’s additional clustering using KDE

(kernel density estimation), as it led to oversampling and limited

speedups to below 2 − 5× on each workload.

Huggingface Suite: The Huggingface workloads closely align

with how recent GPUs are utilized during ML/LLM serving, exhibit-

ing long execution times of ∼30 minutes (Table 2). STEM signifi-

cantly outperformed the uniform random sampling, achieving a

31,719× speedup with an error that is 4.25× smaller. In both the

CASIO and HuggingFace suites, the observed sampling error is

significantly smaller than our theoretical error bound of 5%, indicat-

ing that our statistical modeling and clustering approach is highly

effective for ML workloads with statistically analyzable runtime

behavior, as discussed in our observations (Sec. 2.1).

5.2 Limitations of current sampling methods
While the diverse and unpredictable runtime behaviors of GPU

kernels pose a significant challenge for accurate kernel sampling

(as discussed in Section 2.1), prior methods that rely on instruction-

level or control-flow-based features often fail to distinguish kernels

with substantially different execution characteristics. Conventional

kernel signatures are limited in capturing the wide and sparse exe-

cution time distributions commonly observed in GPU workloads,

as they overlook dynamic runtime context and the kernel’s sensitiv-

ity to the underlying hardware, such as the memory hierarchy. In

contrast, using fine-grained clustering, ROOT differentiates kernels

that share the same code but differ in runtime behavior. STEM then

adaptively assigns sample sizes based on variability within each

cluster, allocating more samples to unstable kernel clusters and

improving sampled simulation accuracy.

Figure 10 illustrates this limitation of current kernel signatures:

each histogram shows a group of kernels considered "identical"

according to previous methods. For example, in cluster 0 of PKA, all

kernels with execution times ranging from 2 𝜇s to 11 𝜇s are treated
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Figure 10: Distribution of execution times for kernels
grouped as "identical" by previous sampling techniques, us-
ing the DLRM workload from the CASIO benchmark suite.
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Figure 11: Impact of varying the error bound (𝜖) on speedup
and sampling error for STEM. Larger 𝜖 values enhance
speedup with increased error.

as identical kernels by PKA’s kernel selection algorithm. PKA selects

one sample from this group and assumes the rest behave identically,

leading to significant errors in sampled simulation. Photon performs

slightly better in distinguishing kernels, but all kernels shown in the

histogram still share a single common proxy for sampled simulation,

potentially missing the runtime diversity.

5.3 Tradeoff between the sample size and error
As increasing the number of sampled kernels reduces simulation

error and diminishes speedup, the core challenge is identifying a

sweet spot that minimizes error while maintaining high speedup.

As PKA and Sieve assume sampling only one or a few kernels per

cluster is sufficient, this leads to high sampling error as shown in

Table 3, despite its aggressive speedup. Photon improves upon this

by comparing GPU BBVs for each kernel, but it still relies on a fixed

threshold of 95% and does not adjust sample sizes based on kernel

behaviors. In contrast, STEM adaptively determines sample sizes

based on the runtime fluctuation of kernels. STEM selects multiple

samples for kernels exhibiting wide or multi-modal histograms to

capture their heterogeneous behavior accurately. This fine-grained

approach enables STEM to achieve near-zero sampling error while

preserving much of the simulation speedup.

Figure 9 shows this behavior in a scatter plot with speedup on the

𝑥-axis and sampling error on the 𝑦-axis. Black × markers indicate
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Table 4: Average error (%) of sampled simulation on 11 Ro-
dinia and 6 LLM workloads across various GPU microarchi-
tectures using kernel sampling methods.

𝜇arch Changes

*PKA

error (%)

*Sieve

error (%)

Photon

error (%)

STEM (ours)
error (%)

Baseline 20.06 24.40 5.96 2.03
Cache size ×2 22.66 25.67 5.44 1.93
Cache size × 1

2
16.65 22.61 5.33 1.96

#SM ×2 17.90 28.18 6.49 2.28
#SM × 1

2
23.68 23.08 5.14 2.30

*We observe high error on Rodinia workloads, as we use smaller

configurations to run full cycle-level simulation for error measurement.

the mean performance of each method. Our method consistently

achieves near-zero error with only modest speedup loss, effectively

capturing the sweet spot in the speedup–error tradeoff.

Sensitivity Analysis on the Error Bound. Using the CASIO
benchmark suite, we evaluated how varying the error bound 𝜖

impacts the tradeoff between simulation speedup and sampling

error. We tested 𝜖 values of 3%, 5%, 10%, and 25%, with a fixed 95%

confidence level. As shown in Figure 11, smaller 𝜖 values reduce

sampling error but lower speedup due to more samples, while larger

values yield higher speedup at the cost of accuracy. For instance, at

𝜖 = 3%, STEM achieved a 0.18% mean error with 76.46× speedup,

whereas 𝜖 = 25% gave 228.53× speedup with 2.00% error. These

results show that STEM enables flexible tuning to balance accuracy

and efficiency.

5.4 Validating STEM on various GPU
microarchitectures

We evaluate STEM’s robustness using a design space exploration

(DSE) experiment on the cycle-accurate simulator MacSim [16]. The

results suggest that the sampling error on new hardware remains

comparable to the error on the baseline machine, even if we use

the same sampling information extracted from the execution time

profile. We modified key microarchitectural parameters, including

L1/L2 cache sizes and the number of streaming multiprocessors

(SMs), to model GPUs with varying hardware configurations. We

selected 11 Rodinia and 6 ML workloads from the HuggingFace

suite and reduced their sizes to run a full simulation within a few

days on MacSim.

Table 4 reports the average error of each method across different

hardware variants. The error scale compared to Table 3 increased

due to the smaller input configurations and fewer kernel calls for

the Rodinia workloads. STEM consistently maintains significantly

lower error than baseline methods on each hardware change. Al-

though such hardware differences cause slight variations in error,

STEM’s low error across variants highlights the robustness of its

execution time–based sampling strategy, supported by its statisti-

cally rigorous design. We sampled six different LLM and Rodinia

workloads and compared the estimated cycle counts of each method

against ground truth, as shown in Figure 12. PKA and Sieve often

under- or overestimate total cycle counts depending on the work-

load, while STEM consistently produces accurate estimates, even

under significant microarchitectural changes.

Second, we evaluate cross-GPU portability by using sampling in-

formation from the NVIDIAH100 andmeasuring the sampling error

Base
line

Cach
e (

2x
)

Cach
e (

0.5
x)

#SM
 (2

x)

#SM
 (0

.5x
)

0

200

Cy
cle

s (
x 

10
6 ) bloom

Base
line

Cach
e (

2x
)

Cach
e (

0.5
x)

#SM
 (2

x)

#SM
 (0

.5x
)

0

100

Cy
cle

s (
x 

10
6 ) gpt2

Base
line

Cach
e (

2x
)

Cach
e (

0.5
x)

#SM
 (2

x)

#SM
 (0

.5x
)

0
2500
5000

Cy
cle

s (
x 

10
3 ) bfs

Base
line

Cach
e (

2x
)

Cach
e (

0.5
x)

#SM
 (2

x)

#SM
 (0

.5x
)

0
2500
5000

Cy
cle

s (
x 

10
3 ) gaussian

Base
line

Cach
e (

2x
)

Cach
e (

0.5
x)

#SM
 (2

x)

#SM
 (0

.5x
)

0
1000
2000

Cy
cle

s (
x 

10
3 ) pf_naive

Base
line

Cach
e (

2x
)

Cach
e (

0.5
x)

#SM
 (2

x)

#SM
 (0

.5x
)

0
250
500

Cy
cle

s (
x 

10
3 ) srad_v1

PKA Sieve Photon STEM Real

Figure 12: Cycle count comparison between sampled and
full simulation across GPU microarchitecture changes using
various kernel sampling methods and workloads.
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Figure 13: Sampling kernels with STEM onH200 using kernel
profiles from H100 results in low sampling error.

on the newer H200 GPU, which features increased global memory

capacity and bandwidth. As shown in Figure 13, sampling decisions

made on the H100 result in an average error of 5.46% when applied

to the H200. The dlrm workload, known for its memory-intensive

behavior and random access patterns due to large embedding tables,

exhibits the highest error due to the hardware’s significant memory

subsystem upgrades.

Across both experiments, despite hardware-induced changes in

absolute kernel execution time, the underlying kernel behaviors and

their microarchitectural characteristics captured by STEM using

the execution time distributions remain effective for identifying

representative kernels–yielding sampling errors on various GPU

microarchitectures.

5.5 Validation on microarchitectural metrics
We conducted a detailed microarchitectural behavior comparison to

evaluate how well the sampled workload represents the full work-

load beyond total execution time. We collected 13 metrics from four

microarchitectural categories: 1○ shared/global memory access pat-

terns, 2○ L1/L2 cache accesses, 3○ 16/32-bit floating-point operation

counts, and 4○ warp execution/branch efficiencies. These provide a

comprehensive view of the workload’s interaction with key GPU

subsystems, offering insights into memory hierarchy utilization,

computational precision, and execution control efficiency. We pre-

dicted these metrics using a weighted sum over the sampled kernels,

following the same approach used to estimate total execution time
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Figure 14: Comparison of microarchitectural metrics be-
tween the full workload and the sampled workload. We used
the bert_infer workload of the CASIO benchmark suite.

in Section 3.1. Figure 14 shows near-zero differences between the

sampled and full simulations across all metrics for the bert_infer
workload in the CASIO suite. We observe similar trends across all

other CASIO workloads. We used the same error bound of 𝜖 = 5%,

as it empirically achieved near-zero error in microarchitectural

metrics without significant compromise in speedup.

These results suggest that STEM accurately captures diverse mi-

croarchitectural behaviors, despite relying primarily on execution

time for sampling. The sampled simulation with STEM reflects the

runtime characteristics of the full workload–a critical requirement

for GPUs, where the interplay of parallelism, memory hierarchy,

and control flow shapes performance. For this evaluation, we as-

sumed an optimally warmed-up cache and focused on L2 read hit

rate, as GPU cache policies guarantee 100% L2 hit rate for writes.

5.6 Scalability of STEM on large workloads
STEM is significantly more scalable than prior methods, as it relies

solely on kernel-level execution time data and employs an efficient

hierarchical clustering algorithm. In contrast, methods such as PKA

and Sieve depend on instruction- or basic-block-level statistics col-

lected per warp, incurring substantial overhead due to frequent

atomic operations and heavy reliance on limited GPU hardware

counters. These methods often require multiple kernel replays and

experience slowdowns from contention, making them impracti-

cal for large-scale workloads. While Photon collects BBVs more

efficiently than instruction counts, it still suffers from high time

and space overhead when comparing BBVs for every kernel. Its

comparison cost grows quadratically with the number of kernels,

becoming infeasible for workloads with millions of kernel invoca-

tions. Photon’s time complexity ranges from O(𝑁𝑆𝑑) to O(𝑁 2𝑑),
where 𝑁 is the number of kernels, 𝑆 is the number of samples,

and 𝑑 is the BBV dimensionality. As a result, Photon cannot scale

effectively to workloads with millions of kernel calls. In contrast,

STEM achieves a lower complexity of O(𝑁 log𝐾) to O(𝑁 log𝑁 )
in the worst case, where 𝐾 is the number of subclusters.

Table 5: Comparison of profiling overheads across bench-
mark suites relative to original uninstrumented wall time.
Some values were omitted due to excessive overhead.

Sampling

methods

Profiler used,

metrics collected

Rodinia

(GPGPU)

CASIO

(ML)

Huggingface

(LLM & ML)

PKA [2]

NCU, collecting

12 metrics

35.57× 3704.23× N/A

Sieve [24]

NVBit, collecting

num. of instrs

94.14× 293.58× N/A

Photon [21]

NVBit, collecting

& processing BBVs

12.81× 38.58× N/A

STEM

(ours)

NSYS, collecting

kernel exe. time

1.54× 5.53× 1.33×

Table 5 illustrates that profiling overhead increases significantly

with larger workloads. We measured the profiling overheads of our

method and prior approaches using the profilers noted in our ex-

periment setup. PKA and Sieve introduce overheads of 200×–3000×
on the CASIO suite, rendering them impractical for large work-

loads such as those from HuggingFace. While Photon incurs less

overhead for BBV collection, its high-dimensional BBV compar-

ison algorithm introduces quadratic time complexity, making it

infeasible for workloads like GPT-2, which contains over 50 million

kernel invocations with 800+ BBV dimensions per kernel before the

dimension reduction with PCA. STEM reduces profiling overhead

by 53.07× to 669.60× on CASIO, making it practical for modern

ML workloads. Unlike prior methods, whose overhead grows with

kernel count, STEM’s profiling remains lightweight and scales well

due to fixed post-processing cost. For HuggingFace models, prior

methods would require up to 78.68 days of profiling and processing

per workload, assuming the same overhead ratio.

6 Discussion
6.1 Potential limitations of using execution

time in kernel sampling
Leveraging kernel execution time for workload sampling provides

three key advantages: accuracy through fine-grained sampling, sta-

tistical feasibility supported by a rigorous error model, and scalabil-

ity due to minimal profiling overhead. While these advantages are

highly effective, some potential concerns arise with our approach.

A potential concern of STEM is that it depends on hardware-

dependent data for sampling. When we perform profiling and sam-

pling on hardware A but run the simulation on hardware B, the

sampled kernels from hardware A may fail to capture the work-

load’s runtime behavior on hardware B. For instance, a kernel with

consistent execution time on hardware A might display heteroge-

neous runtime behavior on a new GPU microarchitecture. In such

cases, the original samples may not fully represent the runtime

variability on the target hardware, potentially compromising the

accuracy of the sampled simulation. While STEM is not entirely

immune to this issue, STEM’s fine-grained kernel analysis and adap-

tive sampling strategy minimize such hardware-dependent errors.

The core of this resilience lies in STEM’s adaptive sampling, which

naturally allocates more samples to kernels sensitive to microarchi-

tectural changes. Typically, kernels with highly varying runtimes

at every invocation, often those whose performance relies heavily

on the memory system, are most susceptible to hardware changes.



MICRO ’25, October 18–22, 2025, Seoul, Republic of Korea Chung et al.

Because STEM samples these variable kernels more frequently on

the source hardware, it preemptively captures a diverse range of

behaviors. This inherent oversampling of sensitive kernels ensures

that the approach remains robust, even when microarchitectural

changes on the target hardware affect their performance. Therefore,

STEM often shows much higher accuracy than previous works

using hardware-independent parameters, as they only take one

or significantly fewer samples from each kernel or cluster. This

minimizes hardware-dependent inaccuracies in applications like

hardware design space exploration (DSE).

To illustrate this principle, consider two kernels: Kernel-A, which

is memory-bound and exhibits high runtime variability, and Kernel-

B, which is compute-bound and shows stable performance. Based

on its analysis, STEM would select many representative samples

from Kernel-A but only a few from Kernel-B. Now, consider a

microarchitectural change on the target hardware–such as a new

cache replacement policy, pagemanagement, or prefetcher behavior.

This change would likely impact the performance of the memory-

sensitive Kernel-A but have a minimal effect on Kernel-B. Even

if the change alters the execution of Kernel-A, the impact on the

overall estimated performance remains low due to the large number

of samples already chosen from it. Therefore, such deviations are

unlikely to affect the simulation results’ accuracy significantly.

Our empirical observations support STEM’s robustness. As shown

in Figure 14, kernels within the same cluster tend to maintain

similar microarchitectural behavior, even though we cluster them

solely based on execution times. This homogeneity suggests that

while a sampled simulation cannot be identical to a full simulation,

the selected samples will likely preserve their core microarchitec-

tural characteristics despite hardware changes. Furthermore, our

experiments confirm this resilience. In both DSE and hardware-

switching scenarios (Figure 12, 13), our methodology proves reliable

and demonstrates superior accuracy compared to previous methods.

6.2 Limitations and Future works
Multi-GPU workloads. Extending to multi-GPU workloads is

a promising direction for future work. Supporting multi-device

environments with STEM requires careful handling of both syn-

chronous and asynchronous communication kernels and consider-

ation of data/control dependencies, computation–communication

overlap, and inter-device synchronization. Future extension of our

work could involve using Chakra ET (execution trace), which is a

standard method of representing multi-device ML workloads with

a DAG (directed acyclic graph) of operations and dependencies [36].

Node and edge sampling on such DAG-style ETs would be a decent

starting point to analyze data and control dependencies between

computation and communication kernels with implicit synchro-

nizations between devices. Addressing this problem would be a

foundational step toward fast and accurate sampling for large-scale,

multi-GPU simulators [19, 42].

Warmup of hardware states in sampled GPU simulations.
STEM’s selection algorithm for representative kernels assumes

ideal warmup of cache and hardware states. However, certain mi-

croarchitectural components, such as the L2 cache, may retain state

across kernel boundaries in real hardware, potentially leading to

discrepancies in cache reuse during sampled simulation. Efficient

and accurate warmup of architectural and microarchitectural states

in sampled GPU simulations remains an open research problem

that has yet to be fully addressed in the GPU domain.

Despite this limitation, we observe that kernel-level simulation

time in most workloads evaluated in this paper is sufficiently long

to mitigate the impact of imperfect cache warmup. For instance,

assuming an L2 cache size of 10–50 MB, a few million warp-level

memory instructions are typically enough to saturate the GPU

caches; a negligible fraction (less than 0.1%) of total instructions

in the majority of our benchmarks. To quantify the potential ef-

fect of inter-kernel cache reuse, we performed an extreme-case

experiment by flushing the L2 cache between every kernel. The

results show minimal accuracy degradation: for the STEM method,

error increased by only 0.70% on Rodinia and 0.07% on CASIO. For

comparison, PKA exhibited 0.92%, Sieve 4.08%, and Photon 0.61%

error on Rodinia. This limited impact is due to the large memory

footprints of the kernels, as most cache reuse occurs within kernels

rather than across them.

Exploring alternative sampling granularity, such as grouping

multiple consecutive kernels as the minimum unit, could help cap-

ture inter-kernel cache effects. However, this would likely introduce

substantial overhead, significantly impacting the speedup benefits

of sampling. Another potential solution, hardware state check-

pointing, explored in CPU simulation [39], may provide accuracy

but remains impractical on modern GPUs due to the significant

performance and storage costs of saving large L2/L3 states (e.g.,

B100, MI300X) and register files. Nonetheless, lightweight warmup

strategies, such as inserting warmup instructions or short warmup

kernels, may offer practical benefits with minimal simulator modi-

fications.

7 Related works
7.1 Workload sampling for CPUs
SimPoint [9] uses Basic Block Vectors (BBVs) to identify representa-

tive regions in CPUworkloads. It segments execution into slices and

applies K-means clustering on BBVs, enabling sampled regions to re-

flect full workload behavior across different architectures. SMARTS

[43] and SimFlex [41] build on SimPoint by incorporating statistical

techniques such as matched-pair comparison to reduce simulation

points. Extensions like those by Perelman et al. [31], BarrierPoint,

and LoopPoint [3, 33] adapted SimPoint for multi-threaded work-

loads. Due to GPUs’ high thread-level parallelism (TLP) and distinct

execution characteristics, new sampling techniques have been de-

veloped specifically for GPU workloads. However, they share the

same core goal of representative workload sampling.

7.2 Kernel-level workload sampling for GPUs
TBPoint [10] uses microarchitecture-independent metrics obtained

from profiling to apply hierarchical clustering, grouping similar

kernels, and then sampling the kernel closest to the center of each

group. PKA [2] extends this idea by performing k-means clus-

tering on feature vectors from hardware-profiled data, sweeping

through 𝑘=1 to 20 to find the optimal 𝑘 and then sampling the first-

chronological kernel from each cluster. On the other hand, sieve

[24] only uses the number of instructions as the feature vector to

reduce profiling overhead. It stratifies the kernels into three groups
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based on the degree of instruction count variation across different

invocations of the same kernel code. Sieve then samples the first-

chronological one for each kernel with the most dominant CTA size.

Photon [21] employs online analysis to dynamically determine at

runtime whether a basic block (BB), warp, or kernel has stabilized,

enabling it to skip ahead to the next simulation phase. It collects

and compares GPU BBVs across all kernel invocations to enable

accurate kernel-level sampling.

7.3 Other sampling methods in GPU workloads
Intra-kernel sampling is a technique for finding simulation points

within a single kernel. GPGPU-MiniBench [44] performs intra-

thread-block analysis, while TBPoint and PKA incorporate intra-

kernel sampling to gain further speedup beyond kernel-level meth-

ods. These techniques detect stable runtime behavior and, once

observed, skip remaining simulation phases. Photon also uses on-

line analysis to assess the stability of basic blocks (BBs) and warps

for effective intra-kernel sampling. Since kernel-level sampling

is orthogonal to warp- or BB-level sampling [2, 21], our method

can be combined with cases of few kernel calls or long-running

kernels. SeyyedAghaei et al. [34] accelerate GPU simulation using

small-scale models. Still, their approach is limited to workloads that

scale linearly with the number of streaming multiprocessors (SMs),

covering only a narrow class of GPU applications.

8 Conclusion
This paper introduces STEM, an accurate, scalable, and statistically

robust kernel-level sampling solution for large-scale GPU work-

loads. STEM and ROOT leverage key observations on the heteroge-

neous runtime characteristics of modern GPU kernels, particularly

how their execution time distributions provide valuable insights

for accurate sampling. STEM offers a fast and reliable kernel sam-

pling solution with high speedup and minimal error. Our evaluation

demonstrates that our work significantly reduces sampling error

on cycle-level simulations with design space exploration (DSE) ex-

periments. Moreover, STEM exhibits excellent scalability across

modern large-scale GPU applications.

9 Appendix
9.1 Solution for Problem 1.
Let 𝑎𝑖 ≡ 𝜇𝑖 , 𝑏𝑖 ≡ 𝑁 2

𝑖
𝜎2

𝑖
, and 𝑐 ≡ (𝜖∑

𝑖 𝑁𝑖𝜇𝑖/𝑧1−𝛼/2
)2

for simplicity.

Then, the Problem 1 becomes as below:

minimize

𝑚𝑖

∑︁
𝑖

𝑎𝑖𝑚𝑖

subject to

∑︁
𝑖

𝑏𝑖

𝑚𝑖
− 𝑐 ≤ 0

and 𝑚𝑖 > 0 for ∀𝑖 ∈ {0...𝑘 − 1}.

The corresponding Lagrangian function L can be written as:

L(m, 𝜆) =
∑︁
𝑖

𝑚𝑖𝑎𝑖 + 𝜆𝑘 · (
∑︁
𝑖

𝑏𝑖

𝑚𝑖
− 𝑐) +

∑︁
𝑖

𝜆𝑖 · (−𝑚𝑖 ) .

The solution m∗
must satisfy the following four Karush–Kuhn-

Tucker (KKT) conditions:

• Stationary Condition: ∇L(m∗
; 𝜆) = 0 (a)

• Primal Feasibility:

∑
𝑖 𝑏𝑖/𝑚∗

𝑖
− 𝑐 ≤ 0 (b)

and (−𝑚∗
𝑖
) ≤ 0 for ∀𝑖 ∈ {0...𝑘 − 1} (c)

• Dual Feasibility: 𝜆𝑖 ≥ 0 for ∀𝑖 ∈ {0...𝑘} (d)

• Complementary Slackness: 𝜆𝑘 · (∑𝑖 𝑏𝑖/𝑚∗
𝑖
− 𝑐) + ∑

𝑖 𝜆𝑖 ·
(−𝑚∗

𝑖
) = 0 (e)

From (b), (c), and (d), we can see that in each term, either one of 𝜆𝑖
or themultiplied term should be zero. Since we are assuming𝑚𝑖 > 0,

𝜆𝑖 = 0 for∀𝑖 ∈ {0...𝑘−1}. Also, from (a), 𝑎𝑖−𝜆𝑘𝑏𝑖/(𝑚∗
𝑖
)2−𝜆𝑖𝑚∗

𝑖
= 0.

Since 𝑎𝑖 ≠ 0, 𝜆𝑘 ≠ 0, and thus the equality of (b) holds, and thus

𝑚∗
𝑖
=

√︁
𝜆𝑘𝑏𝑖/𝑎𝑖 for ∀𝑖 ∈ {0...𝑘 − 1}.

By putting this into (b), we obtain

∑
𝑖

√︁
𝑎𝑖𝑏𝑖/𝜆𝑘 = 𝑐 and thus

𝜆𝑘 = (∑𝑖

√
𝑎𝑖𝑏𝑖/𝑐)2

. Therefore, the solution to the non-linear opti-

mization problem is:

𝑚𝑖 =

√︁∑
𝑗 𝑎 𝑗𝑏 𝑗

𝑐
·

√︄
𝑏𝑖

𝑎𝑖
for ∀𝑖 ∈ {0...𝑘 − 1}.

9.2 Proof of Theorem 3.1
Proof. By the definition of sampling errors,∑︁

𝑖

(𝑁 ( 𝑗 )
𝑖

)2
(𝜎 ( 𝑗 )

𝑖
)2

𝑚
( 𝑗 )
𝑖

≤
(

𝜖

𝑧
1−𝛼/2

∑︁
𝑖

𝑁
( 𝑗 )
𝑖

𝜇
( 𝑗 )
𝑖

)
2

(9)

satisfies for arbitrary ∀𝑗 ∈ {0, ..., 𝑁 − 1}.
Since

𝜖
𝑧

1−𝛼/2

∑
𝑖 𝑁

( 𝑗 )
𝑖

𝜇
( 𝑗 )
𝑖

is positive for every 𝑗 , we apply the

following inequality:

∑
𝑗 𝑥

2

𝑗
≤ (∑𝑗 𝑥 𝑗 )2

when 𝑥 𝑗 ≥ 0 for ∀𝑗 .
We then sum (9) by 𝑗 to get∑︁

𝑖 𝑗

(𝑁 ( 𝑗 )
𝑖

)2
(𝜎 ( 𝑗 )

𝑖
)2

𝑚
( 𝑗 )
𝑖

≤
(

𝜖

𝑧
1−𝛼/2

)
2 ∑︁

𝑗

(∑︁
𝑖

𝑁
( 𝑗 )
𝑖

𝜇
( 𝑗 )
𝑖

)
2

(10)

≤
(

𝜖

𝑧
1−𝛼/2

)
2 ©­«

∑︁
𝑖 𝑗

𝑁
( 𝑗 )
𝑖

𝜇
( 𝑗 )
𝑖

ª®¬
2

. (11)

The sum

∑
𝑖 𝑗 in (11) is the same as summing through every cluster

in the union set

⋃𝑁−1

𝑗=0
{𝐶 ( 𝑗 )

𝑖 𝑗
}. By substituting

𝜇̃ =
∑︁
𝑖 𝑗

𝑁
( 𝑗 )
𝑖

𝜇
( 𝑗 )
𝑖

and 𝜎̃2 =
∑︁
𝑖 𝑗

(𝑁 ( 𝑗 )
𝑖

)2
(𝜎 ( 𝑗 )

𝑖
)2

𝑚
( 𝑗 )
𝑖

,

we transform (11) into the following inequality:���� (𝜇̃ + 𝑧1−𝛼/2
𝜎̃) − 𝜇̃

𝜇̃

���� ≤ 𝜖. (12)

This inequality implies that the cluster set union also gives bounded

sampling error under a 1 − 𝛼 confidence interval.
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A Artifact Appendix
A.1 Abstract
This artifact accompanies our MICRO ’25 paper "Swift and Trust-

worthy Large-Scale GPU Simulation with Fine-Grained Error Mod-

eling and Hierarchical Clustering." It includes profiling scripts,

benchmark suites, simulation infrastructure, and figure genera-

tion code to reproduce the key results: Figures 1, 7–12, and Ta-

bles 3, 4. The artifact provides pre-profiled results as well as in-

structions for collecting new measurements. WE profile and sim-

ulate CASIO, Huggingface, and Rodinia workloads using Mac-

Sim. This artifact enables evaluation of runtime heterogeneity,

sampling accuracy, and simulator validation. The full repository

and the following README.md files are publicly available at https:

//github.com/ejchung0406/STEM-AE.

A.2 Artifact check-list (meta-information)
• Algorithm: STEM sampling methodology

• Compilation: GCC, NVCC 12.X

• Data set: CASIO, Huggingface, and Rodinia benchmark suites

• Run-time environment: Python 3.9+, CUDA 12.4+, Linux

• Hardware: NVIDIA GPU

• Run-time state: Provided runtime CSVs and simulated traces

• Execution: Command-line Shell and Python scripts

• Metrics: Kernel execution time, simulation cycles, sampling error,

speedup

• Output: Figures (PDFs), CSV logs, simulation stats

• Experiments: Figure reproduction, sampling comparison, simula-

tor validation

• How much disk space required (approximately)?: 100 GB (in-

cluding benchmark data and profiling results)

• How much time is needed to prepare workflow (approxi-
mately)?: 1 hour (without full profiling)

• How much time is needed to complete experiments (approxi-
mately)?: 3 hours (for full profiling and full cycle-level simulation)

• Publicly available?: Yes

• Workflow automation framework used?: Shell scripts

• Archived (provideDOI)?: https://doi.org/10.5281/zenodo.17059808

A.3 Description
A.3.1 How to access. The artifact is publicly available on Github

(https://github.com/ejchung0406/STEM-AE) and Zenodo (https://

doi.org/10.5281/zenodo.17059808).

A.3.2 Hardware dependencies. NVIDIA GPU (CUDA 12.4+ capa-

ble), 100+ GB of free disk space

A.3.3 Software dependencies. Python 3.9+ and pip, Nsight Systems

CLI, Nsight Compute CLI, CUDA Toolkit 12+, gdown (for data

download), Git (for submodules), C++ build tools (GCC, Make),

NVCC.

A.3.4 Data sets. CASIO benchmark suite (with PyTorch models),

Huggingface transformer workloads, Rodinia GPU benchmarks

(with downloadable input data).

A.4 Installation
Follow the Quick Start instructions in the main README: https://

github.com/ejchung0406/STEM-AE?tab=readme-ov-file#quick-start.

A.5 Experiment workflow
Each figure directory contains: 1○ Profiling scripts using Nsight

Systems and Compute 2○ Pre-collected results as CSVs 3○ Plotting

code to generate final figures.

Each subdirectory provides figure-specific instructions. The bun-

dled CSVs can be used to regenerate Figures 1 and 7–12 without

re-profiling.

A.6 Evaluation and expected results
You should be able to reproduce:

• Figure 1: Runtime heterogeneity histograms

• Figures 7–8 and Tables 3, 5: STEM sampling evaluation

• Figure 9: Speedup vs. accuracy scatter plots

• Figure 10: Limitations of existing sampling methods

• Figure 11: STEM error bound sweeps

• Figure 12 and Table 4: MacSim-based simulator validation

Generated data and plots (if available) should closely match the

MICRO paper results. Generated data and plots (where available) are

intended to closely match the results presented in the MICRO paper.

However, some artifacts only partially reproduce the experimental

results due to storage limitations for full traces and profiled data. In

some cases, CSV files or plotting scripts are pre-filled with values

obtained from profiling on our machines using the same or closely

related code.

Please note the following exceptions:

• Figures 7 and 11 were executed only once for this artifact

evaluation, whereas in the paper, we averaged over 10 inde-

pendent runs to reduce randomness from kernel sampling.

As a result, the artifact versions may show slight variations

from the final published figures.

• Table 4 requires full MacSim traces for all workloads the

paper uses. Due to storage constraints, we release only a

subset of workloads, whichmay result inminor discrepancies

compared to the paper.

• Figures 13 and 14 are not included in this artifact release.

These experiments require substantial storage and comput-

ing resources for profiling and trace generation. Neverthe-

less, the results can be reproduced independently by applying

the same methodology and profiling steps described in the

paper.

We appreciate your understanding regarding these limitations.

A.7 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-and-

badging-current

• https://cTuning.org/ae
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