Swift and Trustworthy Large-Scale GPU Simulation with
Fine-Grained Error Modeling and Hierarchical Clustering

Euijun Chung
School of Computer Science
Georgia Institute of Technology
Atlanta, Georgia, USA
euijun@gatech.edu

Sung Ha Kang
School of Mathematics
Georgia Institute of Technology
Atlanta, Georgia, USA
kang@math.gatech.edu

Abstract

Kernel-level sampling is an effective technique for running large-
scale GPU workloads on cycle-level simulators by selecting a rep-
resentative subset of kernels, thereby significantly reducing simu-
lation complexity and runtime. However, in large-scale GPU work-
loads, kernels often exhibit heterogeneous runtime behaviors where
some identical kernels show fluctuating performance, while oth-
ers display multiple performance saturation points. We observe
that the kernel execution time distribution is a powerful signature
for addressing this complexity. By carefully analyzing execution
time distributions, we show that heterogeneous kernels can be ef-
fectively classified and sampled, significantly reducing errors in
sampled simulations.

This paper proposes STEM+ROOT, a fine-grained kernel-level
sampling methodology that enables trustworthy sampled simu-
lation by achieving minimal sampling error. STEM leverages the
distribution of kernel execution times as a signature and applies
statistical techniques to determine optimal sample sizes with tight
error bounds. ROOT is a novel hierarchical clustering framework
built on top of STEM that ensures the sampled kernels faithfully
represent the entire workload in terms of execution time and a wide
range of microarchitectural metrics. STEM achieves high scalabil-
ity for large-scale GPU workloads by significantly reducing offline
profiling overhead for collecting kernel execution times. When eval-
uated on the latest GPU benchmark suite, our proposed method-
ology reduces sampling error by 27.6-81.9x and achieves 7-600x
faster kernel profiling than existing approaches while achieving
comparable performance.

CCS Concepts

« Computing methodologies — Modeling and simulation; «
Computer systems organization — Distributed architectures;

This work is licensed under a Creative Commons Attribution 4.0 International License.
MICRO °25, Seoul, Republic of Korea

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1573-0/2025/10

https://doi.org/10.1145/3725843.3757107

Seonjin Na
School of Computer Science
Georgia Institute of Technology
Atlanta, Georgia, USA
seonjin.na@gatech.edu

Hyesoon Kim
School of Computer Science
Georgia Institute of Technology
Atlanta, Georgia, USA
hyesoon@cc.gatech.edu

Heterogeneous (hybrid) systems; « Mathematics of computing —
Probabilistic representations.

Keywords
GPU, Workload sampling, Simulation methodology

ACM Reference Format:

Euijun Chung, Seonjin Na, Sung Ha Kang, and Hyesoon Kim. 2025. Swift and
Trustworthy Large-Scale GPU Simulation with Fine-Grained Error Modeling
and Hierarchical Clustering. In 58th IEEE/ACM International Symposium on
Microarchitecture (MICRO’ 25), October 18-22, 2025, Seoul, Republic of Korea.
ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3725843.3757107

1 Introduction

Cycle-level simulations are critical in computer architecture re-
search, enabling detailed evaluation of microarchitectural changes,
design space exploration, power and energy estimation, and more
[7, 18, 22]. While widely adopted tools such as AccelSim [15], MG-
PUSim [37], and MacSim [16] support cycle-level GPU simulation,
the growing computational demands of modern machine learning
(ML) workloads have made it increasingly challenging to simulate
them effectively [25]. Our observations show that even a 1-second
large language model (LLM) inference workload can require several
days of simulation, as the simulator must update the microarchitec-
tural state of the GPU at every cycle. Without effective optimization
techniques, this challenge limits the practicality of simulation-based
performance modeling and exacerbates the gap between workloads
used in real GPU deployments and those used in simulators.

Workload sampling is a widely adopted technique for accelerat-
ing cycle-level simulations by reducing the workload size while pre-
serving its unique runtime characteristics. This approach has been
extensively studied in both CPU [3, 9, 33, 43] and GPU [2, 10, 21, 24]
domains. The core idea is to divide the workload into multiple in-
tervals and extract a signature from each interval that captures
its microarchitectural runtime behavior. The simulation sampler
selects a subset of representative intervals, and the simulator extrap-
olates the results to estimate the performance of the full workload.
While selecting less representative intervals can compromise accu-
racy, it enables substantial reductions in simulation time compared
to running the full workload.

https://orcid.org/0009-0002-7380-3552
https://orcid.org/0009-0009-0734-8126
https://orcid.org/0000-0002-0312-6595
https://orcid.org/0000-0002-6061-7825
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3725843.3757107
https://doi.org/10.1145/3725843.3757107

MICRO 25, October 18-22, 2025, Seoul, Republic of Korea

max_pool bn_fw_inf unrolled_elementwise
,

2000 200 ‘i
1
i

) Tl

18 19 20 5 10 15 5 20 25 3.0 35
_128x64_nn

o

lementwise_grid_stride sgemm_64x64_nn

9
%0 -
1 5000
I 500 |
20 1]
o l 4 0

50 60 70 80 20 30 7 8

Kernel Calls
o

Kernel Execution Time (us)
Figure 1: Execution time histograms of repeated GPU kernel
calls from ML workloads (CASIO benchmark suite). Kernel
names shown above each plot. Execution times of repeatedly
executed kernels show runtime heterogeneity.

Kernel-level sampling is widely used in GPU simulation to im-
prove scalability. Still, the sampling error can be significant if the
kernel signatures used to select representative kernels fail to cap-
ture their runtime behavior. Previous approaches have relied on
various instruction-level and control-flow-related metrics as kernel
signatures [2, 10, 21, 24]. Although these metrics capture the pro-
gram characteristics related to control flow graphs or static code
features, we observe that they often fail to capture input-dependent
characteristics at runtime, which are frequently a more significant
source of variation in modern GPU applications. For example, even
the same GPU kernel, such as gemm, can be invoked repeatedly in a
fixed compute graph but show significantly varying performance
due to microarchitectural effects. Although kernel code and control
flow remain constant, input sparsity, tensor layout, memory align-
ment, and cache locality can significantly affect execution efficiency.
This variability highlights the need for a new kernel signature to
differentiate these performance-influencing factors.

We observe that ML workloads [6] on GPUs involve a substantial
number of repeated kernel invocations [27, 30] due to extensive
batching and layer-level iterations. However, the same kernel of-
ten exhibits heterogeneous runtime behaviors across invocations,
which poses a significant challenge for kernel-level sampling since
the samples must capture all the different ways the kernel behaves
during the workload. Surprisingly, we discovered that the distribu-
tions of kernel execution times offer powerful insights in categoriz-
ing these differences, enabling more accurate sampling strategies
when used. For instance, if the execution time distribution of a ker-
nel exhibits distinct peaks, this indicates the presence of multiple
performance saturations—each peak reflecting the kernel’s opera-
tion in a different context within a workload. In such cases, separate
samples must be taken from each peak to capture these distinct
behaviors accurately. Conversely, when the same kernel exhibits a
large standard deviation in execution time, it indicates significant
runtime variability—often caused by its memory-bound nature and
fluctuating memory latencies. In such cases, accurate simulation re-
quires more samples to fully capture the performance variability in
these scenarios, ensuring statistically confident simulation results.

Based on these observations, we propose STEM+ROOT: a kernel-
sampling technique that leverages the execution time distribution
to extract microarchitectural insights from kernels and perform
fine-grained sampling. Our approach uses hierarchical clustering
and statistical error modeling to fully capture the runtime hetero-
geneity shown in GPU kernel execution profiles, thereby accurately

Chung et al.
Profiler o
\,‘ A — Small
l’ —

\,

Kernel A| —»

#Kernel Calls

(/T —> Moderate
AN
— — :
Exe. Time Histogram TA, Big

Figure 2: Motivation on execution-time-based kernel sam-
pling. Kernels show wide variability and/or multiple peaks,
requiring both fine-grained clustering and sampling for ac-
curate kernel sampling.

characterizing the overall behavior of the workload for sampled
simulation. STEM employs statistical error modeling to charac-
terize each kernel’s runtime behavior and determine the optimal
sample size that balances accuracy and efficiency. ROOT refines
the process by employing fine-grained hierarchical clustering to
determine the optimal number of kernel clusters, selecting repre-
sentative kernels that mirror the full workload’s behavior in terms
of both execution time and microarchitectural metrics. Together,
this approach delivers significant simulation acceleration while
minimizing the sampling error. Furthermore, because execution
time data can be gathered with a lightweight profiler [1, 29] and a
near-linear algorithm, STEM scales effectively to large-scale work-
loads with millions of kernel invocations. Our evaluation on GPGPU
benchmarks [4], ML benchmarks [6], and large-scale LLM/ML work-
loads [12] demonstrates that STEM+ROOT significantly reduces
sampling error compared to prior methods, while achieving com-
parable speedups with substantially lower profiling overhead.

2 Observation and Motivation

Our work leverages the execution time distribution of GPU kernels
to enable accurate kernel-level sampling. This section describes our
observations and motivations on how execution time distributions
provide valuable insights for kernel-level sampling and why we
can broadly generalize this observation across various applications.

2.1 Heterogeneous runtime behavior of
repeated GPU kernels

Observation 1:In large-scale GPU workloads with a massive number
of repeated kernel invocations, identical GPU kernels often exhibit
substantial variation in execution time across invocations. Figure 1
shows execution time histograms of several kernels sampled from
ML workloads in CASIO suite [6]. Some histograms display widely
or narrowly spread distributions, while others exhibit multiple
distinct peaks. This variability is widespread in modern GPU work-
loads compiled from high-level frameworks such as PyTorch [30],
where compute graphs translate into numerous kernel launches
from a relatively small set of kernel types. Even for kernels like
sgemm or winograd, launched with identical code and consistent
parameters (e.g., grid size, block size, and instruction count), run-
time behavior can vary greatly depending on the context that uses
the kernel and the specific input data it processes.

This runtime heterogeneity arises because the same kernel (e.g.,
sgemm) is invoked repeatedly in different contexts as the ML frame-
works translate compute graphs into microarchitecture-specific
GPU kernels. Although the kernel logic and launch configurations
remain unchanged, each invocation often operates on other types

Swift and Trustworthy Large-Scale GPU Simulation with Fine-Grained Error Modeling and Hierarchical Clustering MICRO ’25, October 18-22, 2025, Seoul, Republic of Korea

Time t=0 Full GPU Workload

1
1
Al e e e e [al[a el A e e [A] -

Execution Time

l 1. Group by kernel names

(| [S | | |
[] 11 I—--

2. ROOT: Novel fine-grained
l hierarchical clustering

w000~ @ :I:II:I
eo—— - W=

(Y

3. STEM: Sample representative kernels
l based on exe. time distributions

A2 ooe

WO - @I @

. @O
e @D
(Y
l 4. Sampled simulation
Speed
Y| N | it |

Figure 3: Overview of the proposed methodology. ROOT ap-
plies hierarchical clustering on the same kernels by execu-
tion time to differentiate kernels with similar runtime be-
haviors. STEM selects an adaptive number of representative
samples from each cluster.

of data (e.g., activations, weights, or biases in neural networks)
residing in regions such as global/shared memory or L1/L2 cache.
These differences in input characteristics and memory locality
lead to diverse execution behaviors. Moreover, as shown in the
sgemm_128x64 histogram in Figure 1, the presence of multiple nar-
row, distinct performance peaks suggests that the program uses
the kernel in at least two different contexts within the workload.
In such cases, these distinct behaviors should be treated separately
during the sampled simulation to ensure accuracy. However, rely-
ing solely on code-level analysis makes it difficult to capture this
heterogeneity, as they struggle to account for dynamic factors like
memory access patterns, input data characteristics, and runtime
dependencies that vary based on the kernel’s execution context.

2.2 Extracting kernel’s runtime diversity with
execution time distributions

Observation 2: Kernel execution time distribution is a powerful
signature that can effectively reveal such heterogeneous runtime
characteristics of kernels. The execution time reflects its usage con-
text within a given workload, enabling us to differentiate identical
kernels operating under different conditions. For example, as shown
in Figure 1, the three clearly separated peaks in the histogram sug-
gest that the program uses the same bn_fw_inf kernel in three
different runtime contexts through tens of thousands of repeated
kernel calls. This reuse indicates that the kernel shows different
execution time, likely due to distinct input or usage patterns within
its workload context. By applying clustering methods to group
kernels in each peak, we can easily classify the kernel’s usage and
take separate samples from each peak for accurate kernel-level
sampling.

Moreover, statistical measures such as standard deviation offer
valuable insights into kernel performance variability. For example,
kernels with wide execution time distributions (e.g. max_pool in
Figure 1) exhibit significant runtime jitter. This fluctuation is often
due to the kernel’s memory-bound nature and its sensitivity to mi-
croarchitectural factors. A larger sample size is required to capture
the full range of variability and ensure statistical confidence in sam-
pled simulation results. In contrast, kernels like sgemm_128x64_nn,
which show narrow peaks, suggest more stable performance. Fewer
samples per peak are sufficient for such kernels to maintain high
accuracy for sampled simulation. Note that maxpool and GEMM
operations are generally known to be memory-bound and compute-
bound in convolutional neural network (CNN) workloads.

Figure 2 summarizes our key insight on leveraging the execution
time distributions to perform fine-grained clustering and sampling.
As execution time profiles can simultaneously exhibit multiple per-
formance peaks and large standard deviations, a solution that can
address both dimensions is necessary. This runtime heterogeneity
of kernels motivates the design of STEM and ROOT, where ROOT
clusters kernels based on execution profiles, and STEM dynamically
adjusts sample sizes according to observed runtime variability.

2.3 Using execution time as a kernel signature
for robust and accurate sampling

We claim kernel execution time distributions and their derived sta-
tistical measures are robust signatures for kernel sampling, even
across different GPU microarchitectures. While execution time is
inherently hardware-dependent, the distribution of execution times
yields meaningful, relatively hardware-agnostic insights. Statistical
features such as standard deviation, coefficient of variation (CoV),
and the number of peaks (as shown in Figure 1) capture important
behavioral properties, such as memory or compute intensity, work-
load phase behavior, or input-dependent memory access patterns
that are not tied to the absolute timing values.

Our work leverages these distribution-based features to guide
sampling decisions, making it effective even when the hardware
changes. Instead of comparing kernels solely based on their static
information, our algorithm adaptively increases the sample size for
kernels that are more sensitive to microarchitectural changes (e.g.,
memory-bound kernels) based on their runtime statistics, making it
more likely to capture diverse runtime behaviors even on new hard-
ware or a system. We evaluate this claim in Sec. 5.4 by simulating
design space exploration across architectures, and we observe con-
sistently low error rates, often outperforming prior approaches that
use microarchitecture-independent signatures. In Sec. 6.1, while
we discuss the potential limitations of using execution times for
kernel sampling, we argue that exploiting these statistics offers
high achievements in robustness of our approach.

The rapid evolution of GPU architectures makes execution time
a more practical sampling metric than unstable low-level parame-
ters. In contrast to stable CPU ISAs, proprietary GPU ISAs change
significantly with each generation, rendering kernel signatures
based on instruction or basic-block counts unreliable. For example,
features introduced in NVIDIA’s Volta architecture, like Tensor
Cores (for FP8/BF16) [23] and warp-level primitives (vote, shfl)
[26, 32], can cause the same high-level source code to compile into

MICRO 25, October 18-22, 2025, Seoul, Republic of Korea

drastically different machine code with new performance behav-
iors. Furthermore, recent studies show that GPUs differ in inject-
ing register dependency chains, further undermining architectural
consistency [11]. Consequently, execution time provides a more
versatile and dependable signature for kernels.

3 STEM and ROOT methodology

STEM+ROOT is our kernel-level sampling solution that directly
leverages execution time data to perform fine-grained clustering
and sampling. Figure 3 illustrates an overview of our methodology.
First, kernel calls are grouped by names, as most large-scale GPU
workloads typically consist of repetitive invocations of the same
kernel types. ROOT performs fine-grained hierarchical clustering to
classify kernels with different runtime behaviors, as Figure 1 shows.
STEM then applies precise statistical error modeling to determine
the optimal number of samples from each cluster, ensuring minimal
sampling error while achieving substantial simulation speedups.
A key takeaway of our approach is that it can provide theoretical
error bounds, offering both transparency and predictable accuracy
for sampled simulation results. Since STEM and ROOT are tightly
integrated, we describe the core methodology of STEM and subse-
quently illustrate how ROOT leverages it to perform fine-grained
clustering in the following subsections.

3.1 Kernel-level sampling for GPU workloads

A GPU workload consists of many kernel invocations, often with
repeated executions of the same kernels. Running a full simula-
tion (simulating every kernel invocation in the workload without
sampling) can be prohibitively time-consuming. To address this,
kernel-level sampling selects a subset of kernel calls to simulate, re-
sulting in a so-called "sampled" simulation. The goal of the sampled
simulation is to carefully choose kernels that capture the runtime
characteristics of most workload phases, while minimizing the
length of the sampled simulation to reduce overall time.

After the sampled simulation, the simulator can estimate the
total execution time (execution time of the full simulation) by using
a weighted sum. Specifically, it computes the total time as the sum
of the execution times of the sampled kernels, each multiplied by
a weight corresponding to the number of corresponding kernel
invocations in the full workload that the sample represents.

Let t* denote the ground-truth total execution time of the full
simulation, which is the value we aim to estimate. Let #;,] represent
the estimated execution time obtained from the sampled simulation,
computed as a weighted sum over the sampled kernels. We define
the sampling error e between the estimated and ground-truth
total execution times as follows:

e= total = £

X 100(%). (1)

We use this sampling error to quantify the accuracy of the sam-
pled simulation relative to the full simulation.

t*

3.2 STEM: Statistical Error Modeling for GPU
simulation

STEM is our statistical error model that leverages the Central Limit
Theorem (CLT) and KKT-solver to obtain the optimal sample sizes
for a set of kernels. The summary of STEM is shown in the upper

Chung et al.

part of Figure 4. STEM demonstrates that leveraging execution time
distribution for workload sampling provides significant advantages
in terms of accuracy (Sec. 5.1), theoretical error bounds (Sec. 3.4),
and low profiling overhead (Sec. 5.6).

We begin with the simplest case, where C is a set of invocations
of the same kernel. The objective is to select a subset of these invo-
cations for sampled simulation, but the key question is how many
samples are required. Specifically, we aim to determine the minimal
sample size m that ensures the sampling error remains within a
bound of €. The error bound € is a tunable parameter that works
as a desired upper bound on the theoretical sampling error, and
we set this to values such as 1% or 5%. According to the Central
Limit Theorem (CLT), the sample mean X will always follow a nor-
mal distribution, regardless of the original distribution of execution
times in C. This powerful result holds under two key assumptions:
(1) the sample size is sufficiently large (rule of thumb is m > 30),
and (2) the samples are independent and identically distributed
(i.i.d.) [38]. Fortunately, both conditions are satisfied in large-scale
GPU workloads. The massive degree of kernel invocations ensures
the first condition in most workloads, and using random sampling
with replacement satisfies the i.i.d. assumption. As a result, the
sample mean X of kernel execution times follows a normal distri-
bution: X ~ N (i, 0% /m), where 1 and 62 denote the true mean and
variance of kernel execution times in C [17].

Kernel-level sampling aims to estimate the total execution time
of GPU kernels using only a subset of sampled executions [20]. Our
estimation for the total execution time is t;y = |C| - X, and its true
value is t* = |C| - u. The sampling error, which is the error between
tiotal and ¢* is as follows when the given confidence level is 1 — a:

Zl— a o

_ 2 —
_ ICIX—ICIu'_ FEm ~H
IClp Iz uym

Zi_q/2 is a standard score when the confidence interval is 1 — a,
and this value becomes 1.96 on 95% confidence level.

Therefore, we can obtain the sample size m ensuring error smaller
than the bound (e < €) as follows, with a ceiling function for en-
suring the m is an integer:

m= “—Zl_a/z g)j. 3)
€

This equation represents the statistical error model for the sim-
plest scenario, where we consider a single set of kernels. A similar
analysis can be found in prior statistical sampling studies [5, 43].

The beauty of STEM lies in its versatility, as it can be applied
to any set of kernels with arbitrary distributions if the y and the
o of the kernels are known. For example, no matter whether a
kernel exhibits a narrow or wide execution time histogram, the
same STEM equation (Eq. (3)) can be used to determine the optimal
sample size m.

Equation (3) intuitively demonstrates that by leveraging the
mean (p) and standard deviation (o) of kernel execution times, one
can derive an optimal sample size. Specifically, kernels with wide
execution time distributions will have high o/p values, and this will
hint STEM to determine larger sample sizes. This increased sample
size lets the sampled simulation capture most of the diverse run-
time behaviors, even if a different microarchitecture is used during

*
tiotal — ¢ #1- 5 o

t*

)

Swift and Trustworthy Large-Scale GPU Simulation with Fine-Grained Error Modeling and Hierarchical Clustering MICRO ’25, October 18-22, 2025, Seoul, Republic of Korea

STEM Kernel Cluster Infos Error modeling of X KKT Solver Optimal Sample Size
‘ freq: error bound ¢
(SeC- 3-2) o minimize m: m;, my, ms, ...
OoCooe-| - — e | —p
— for each cluster
A\ ! A Execution Time B, 0 known
S T
g New Subclusters T =meX
Old cluster DD oo Tnew = My '71 +m, 'Yz +ms 'Y3
)
ROOT I I - [- if ot > Tnew: Split into subclusters
(Sec. 3.3) g if ot < Taew: Stop splitting

Sample Sizem
(e > Sample Mean X

|j|:||:|

H Sample Size m;, m,, m;
g Sample Mean X;, X, X;

Figure 4: Overview of STEM (top) and ROOT (bottom). STEM estimates simulation error from kernel execution time distributions
(using the sample mean, X) and employs a KKT solver to minimize the sample size per cluster while meeting error bounds.
ROOT leverages STEM to determine whether splitting kernel clusters will lead to additional simulation time savings.

the sampled simulation, thereby enhancing both the accuracy and
effectiveness of kernel-level sampling.

We use the CoV (coefficient of variation; o /) obtained from
kernel-level profilers [1, 29], as a proxy for the actual value, which
is otherwise unobtainable without full simulation. This CoV repre-
sents the relative width of the execution time distribution. Although
the exact values of o and p may vary across different simulation
settings, the CoV (their ratio) effectively reflects a kernel’s inherent
runtime behavior, such as whether it is memory-bound or suscepti-
ble to hardware changes.

3.3 Optimizing STEM for multiple clusters

In real-world GPU workloads, multiple kernel clusters appear due
to the 1) usage of different kernels and 2) cases where the same
kernel often shows multiple peaks in its execution time distribution.
As a result, sampling typically requires selecting representatives
from several clusters at once. We now consider optimizing STEM
for such multi-cluster cases. While one could apply Eq. (3) indepen-
dently to each cluster, this approach imposes strict error bounds
on every cluster, often resulting in a larger total sample size than
necessary. To address this, we introduce an additional optimization
that jointly considers all clusters. This optimization allows STEM
to reduce the required sample size by 2—-3X on average, enabling
faster simulations without compromising accuracy.

Let a set of kernel clusters as {Cy, Cy, ..., Cx_1 } and denote N; =
|C;| for convenience. Assume we sample mg, my, ..., mi_; number
of kernels from each corresponding cluster. Then, for any i in the
range, C;’s estimated execution time, t;, can be obtained as t; = N;X;
where X; ~ N (ui, criz /m;) by the CLT. Using the linear combination
rule of normal random variables [35], the estimation for the total
execution time ¢ can be expressed as

k-1 2
_ o .
t= > ti= Y NXi~ N | N,-yi,ZNizﬁ) = N(i 6%, (4)
i=0 i i i L

where ji = }; Njpj and 6 =); Nizaiz/mi are used for brevity.
By using the same error equation as Eq. (2) [43], the error bound
inequality e < € becomes

2
ZNiui) : ©

Since the goal of STEM is to minimize simulation time, we define
7 as the total execution time of the samples, a proxy to the total
simulation time. The optimal 7 that satisfies the error constraint e <
€ can be obtained by solving the following non-linear minimization
problem using a KKT solver.
Problem 1.

minimize 7= E mi i
m; n
1

2
~ 290
subject to zl: N; - <
and m; >0 for Vi€ {0,...,k —1}.

Solution. Let a; = pj, bj = NiZO'l.Z, and ¢ = (e ZiNi,Ui/Z1_a/2)2 for
brevity. We apply the Karush-Kuhn-Tucker (KKT) conditions to
obtain the following solution:

V2 iajbi ;
m; = Q‘{ﬁ for Vi e {0,...k — 1}, (6)
c aj

where the ceiling function ensures integer m; values, with minor
sub-optimality. The detailed solution is in Sec. 9.1. O

Using this KKT Solver, we determine the optimal sample sizes
for a given set of clusters. We define the solution in Equation (6) as
STEM, an extended version of Equation (3) optimized for multiple
kernel clusters.

3.4 ROOT: Fine-grained hierarchical GPU
kernel clustering

ROOT is our novel fine-grained GPU kernel sampling methodology
built upon STEM. Its primary objective is to differentiate distinct ex-
ecution time peaks in invocations of identical kernels as illustrated
in Figure 1 and 2. For instance, consider the sgemm_128x64_nn ker-
nel shown in Figure 1. If one were to directly compute the optimal
sample size using STEM over the entire execution time distribution,
the resulting sample size would be overly large due to the high stan-
dard deviation introduced by multiple distinct peaks. However, by
partitioning the cluster such that each cluster contains only a single
peak, the standard deviation within each cluster is significantly

MICRO 25, October 18-22, 2025, Seoul, Republic of Korea

]@ Kernel Profiler

1lm-kernels.report
Name GridDim

Kernel ID Time (ns)

\ STEM
! &
| 10.5 sgemm (128,128,1)
31 maxpool (64,64,16) ROOT| |

T

112 sgemm (128,128,1) .
1m. py 3.4 maxpool (64,64,16) o o
108 sgemm (128,128,1) A

Vi WN= O

7.5 bn_fw (16,64,16)

Weights for each sampled kernel

kernel_sampling_info.txt

Sampled Cluster Kernels Kernel traces
kernel IDs size incduster 0 e
kernel2.raw GPU
[2,6] 330 1[0,2,4,6,..] *GPU kernel3.raw Simu-
[3] 475 [1,3,7,9,..] —»| Sim |—>» kernels.raw —| lator
[5,12,24] 95 [5,12,16,..] Tracer kernel6.raw
[95] [8, 54,76, ...] kerneI]Z.raw

Chung et al.

sampled_trace l

1293

T *Only needed for

trace-based simulators

Figure 5: End-to-end pipeline of STEM’s sampled simulation framework. Kernel profiler extracts execution time per kernel,
and STEM+ROOT creates sampling information based on it. GPU tracer and simulator use the information to run a sampled

simulation.

Eﬂiﬂ . No more tlTe
KeE\eI A[I D < - savings (7o < ue)
Kernel B < — < -
Kernel C [:":“:] < —
o ([e

Figure 6: ROOT’s recursive methodology. ROOT hierarchi-
cally splits kernel clusters until further simulation time sav-
ings are no longer possible.

reduced. Consequently, the optimal sample size decreases, leading
to faster sampled simulation while maintaining high accuracy.

A key challenge in this approach is that the number of peaks (or
runtime contexts) is unknown in advance, making it challenging to
apply clustering methods like k-means as they require the number
of clusters as input. To overcome this, ROOT applies clustering
recursively: it continues splitting clusters until further splits no
longer yield meaningful simulation time savings. This hierarchical
process ensures we isolate kernels with similar execution behavior
while avoiding unnecessary over-partitioning. Figure 6 shows an
example of ROOT performing hierarchical kernel clustering.

The bottom part of Figure 4 illustrates the branching condition
used in ROOT’s recursive algorithm. Given a kernel cluster C, we
apply a clustering method (e.g., k-means) to divide it into subclus-
ters Co, Cq, . .., Cr_1. ROOT then uses STEM (Eq. 6) to estimate the
simulation time before and after the split and compares the results.
If sampling from the new subclusters Cy, ..., Ci_; reduces total
simulation time compared to using the old cluster C, ROOT accepts
the split. This decision is made by comparing the total simulated
time before and after the split, as shown in Equations (7) and (8).
The number of subclusters k can be determined arbitrarily, but we
empirically observe that any number above 2 works well.

Tolg = mX = I-(Zl—a/zo-/lle)z-l X (7)
Tnew = Z miX; = Z —chajbj : \/é - Xi (8)

If 7574 > Tnew, partitioning the old cluster C into new multiple
subclusters {Cy, . .., Cx_1 } will reduce the overall simulation time.
We recursively apply this decision process to achieve fine-grained
kernel clustering with bounded error.

The following proves that any union of error-bounded cluster
sets also maintains error-boundedness. Applying Theorem 3.1 to
each cluster set ensures that the total sampling error across all
clusters remains bounded by e.

THEOREM 3.1. LetS(®) = {C(()O),Cl(o), -k s = {Cél), < h

s, SINSD) - {CéNfl), ---} be N sets of kernel clusters where the
corresponding sampling error of each cluster set is bounded by € with

sample sizes {mfj) } for SU) . Then, the same set of sample sizes gives
; N-1¢(j
a bounded error for the union of every cluster set Uj:() sU,

Proor. The proof is in Appendix 9.2. O

3.5 Running the sampled simulation

Once ROOT completes clustering the kernel invocations into sub-
clusters, we sample kernels with sample sizes m; determined by
STEM. We use random sampling with replacement to select the
samples from each subcluster to satisfy the i.i.d. conditions required
by the CLT. We compute the sample sizes {m;} for each subclus-
ter according to Equations (3) and (6), ensuring that the sampling
process adheres to the desired error bound e.

Figure 5 describes the end-to-end pipeline of our kernel-level
sampled simulation framework and illustrates how our method
integrates with existing GPU simulators. The process begins with
a GPU kernel profiler [1, 29] that collects execution time informa-
tion for each kernel invocation. Our algorithm uses this data to
select the representative kernel samples and determines how many
kernel invocations each sample should represent. The generated
sampling information is then passed to a GPU simulator of choice
[15, 16] along with the corresponding code or trace of the workload.
Traces are generated only for the sampled kernels for trace-based
simulators, significantly reducing trace generation overhead. We
can think of this procedure as embedding the sampling information
into the workload code or trace. The simulator uses the sampling
information to compute a weighted sum of the sampled execution
times, enabling accurate estimation of the total simulation time.

Swift and Trustworthy Large-Scale GPU Simulation with Fine-Grained Error Modeling and Hierarchical Clustering MICRO ’25, October 18-22, 2025, Seoul, Republic of Korea

Table 1: Comparison of previous kernel-sampling methods.

Sampling Methods PKA [2] Sieve [24]

Photon [21] STEM+ROOT (ours)

Kernel name &

12 instr. level metrics .
Num. of instrs

Kernel signature

GPU Basic Block Vector (BBV)

Kernel name &
Exe. time distribution

Hand-tuned,

k-means based on CoV (o/p)

Clustering

Single per cluster,
first chronological

Single per cluster,

Kernel le si
ernel sampe size first chronological

Find a kernel with Fine-grained hierarchical (ROOT)
similar BBV and #warps - - - —
(95% threshold) Adaptive sampling with statistically

determined sample size (STEM)

Instr. count and

Profiling granularity statistics per warp

Instr. count per warp

Basic block count per warp Execution time per kernel

Scalability for

large-scale workloads Very low Low

Low High

Table 2: Workloads used in evaluation of STEM and baselines.

Benchmark Num. of | Avg. Execution | Avg. number of
Suites workloads time (sec)* kernel calls
Rodinia (GPGPU) [4] 13 6.46 1403
CASIO (ML) [6] 11 7.26 64279
Huggingface
(LLM/ML) [12] 6 1835.27 11599870

*The execution time of workloads is measured on the RTX 2080 GPU.

4 Evaluation

This section presents the evaluation results for STEM+ROOT, in-
cluding its accuracy, performance, error bound sensitivity, valida-
tion on microarchitectural metrics, profiling overhead, and analyses
various hardware on simulators. From this point forward, we will
refer to STEM+ROOT as STEM for the sake of brevity.

5 Experiment Setup

Experiment Environment. Our experiments are on various GPUs,
including the NVIDIA H100, H200, and RTX 2080. We used RTX
2080 for profiling experiments, as prior sampling techniques re-
quired over a month of exclusive system use, and it was the only
machine available for that duration. We used Nsight Systems for
kernel-level profiling, but our method applies to any GPU system
that supports similar kernel profilers, such as NVIDIA, AMD, and
Intel GPUs, or TPU/NPUs with similar support [1, 13, 14, 29].

Benchmark Suites. We used three benchmark suites to evaluate
our method in terms of speedup, accuracy, and scalability. We used
Rodinia GPU Benchmark Suite 3.1 [4] for small-scale GPGPU work-
loads (input config. from the baseline work [24]), CASIO DL Suite
[6] for state-of-the-art ML applications. Although some workloads
in the Rodinia suite have a small number of kernel calls, we present
it as a reference for irregular and diverse GPGPU/HPC workloads.
We used a set of ML/LLM workloads for large-scale workloads using
models from the Huggingface repository [12]. The list of models
includes Bert, Bloom, DeiT, Gemma, GPT-2, and ResNet-50, and the
workloads involve generating 1000+ sentences or classifying 7,000+
images. We used CUDA version 12.6.

Table 2 shows the summary of workloads, including the execu-
tion time and number of kernel calls. The three suites will demon-
strate our method’s effectiveness across applications from small-
scale (e.g., Rodinia, input size 1MB to 1000MB) to large-scale ML
models (e.g., HuggingFace, model size 25M to 2B parameters). Ta-
ble 2 highlights the massive number of kernel calls in the CASIO
and HuggingFace suites, where we expect STEM to leverage its
statistical and fine-grained capabilities fully.

Speedup and error of sampled simulations. We define speedup
as the ratio of the cycle count of the full workload to that of the
sampled workload. We compute sampling error using the definition
shown in Eq. (1), comparing the full workload’s cycle count and
the estimate obtained from the sampled workload. In cases where
running the full workload on a simulator was infeasible, we used
cycle counts from machine profiles to compute the speedup and
sampling error of the sampled simulations. In these experiments,
we assume a perfect warmup of the GPU cache and GPU microar-
chitectural states, as we measure the cycle counts on real hardware,
and direct manipulation of the hardware is infeasible. See Sec. 6.2
for further discussion of how we acknowledge this limitation and
estimate its potential impact.

Baseline Methods. As summarized in Table 1, we compare
STEM against three kernel sampling baselines: PKA [2], Sieve
[24], and Photon [21]. We used Nsight Compute (NCU) [28] to
gather the instruction-level metrics required for PKA, and NVBit
(NVIDIA Binary Instrumentation Tool) [40] to collect instruction
counts for Sieve. For Photon, we built a BBV profiler based on their
instr_count_bb example to extract GPU BBVs for each kernel,
enabling compatibility with both trace-based simulators [15, 16]
and execution-driven simulators [37].

Instruction-level profiling per warp introduces substantial perfor-
mance overhead, making methods like PKA and Sieve impractical
for large workloads, as we expect them to take months to complete
profiling Huggingface workloads. Moreover, Photon requires ker-
nel processing time that grows quadratically with the number of
kernel calls, making it infeasible for such workloads with over a
million kernels. We analyze and discuss the overhead of previous
sampling methods in more detail in Sec. 5.6. Therefore, we set uni-
form random sampling, selecting each kernel independently with a
0.1% probability, as a baseline for HuggingFace workloads.

Replication & Hyperparameters. We repeated every experi-
ment 10 times and averaged the results to minimize the randomness.
We use the harmonic mean for speedup [8], while we use the arith-
metic mean for the error. We set the error bound € to 0.05 and used
k = 2 for k-means clustering in each of ROOT’s iterative steps.
We use a z-score of 1.96 for z;_4 /5 (95% confidence level). Sec. 5.3
discusses the sensitivity of the error bound e.

5.1 Speedup and Error validation

Table 3 summarizes the average speedup and sampling error achieved
by the four sampling methods across the workloads. Figures 7 and
8 present the speedup and error results. Scatter plot of CASIO and

MICRO 25, October 18-22, 2025, Seoul, Republic of Korea

GPGPU Workload (Rodinia Suite)

Chung et al.

25044.0 ML Workload (CaSiO Suite)

10000
1000

Speed Up
=
= o
o o
—
I
 —
 —
I
1
I
—

[C=1 PKA B Sieve C Photon [STEM+ROOT (Ours)|

Figure 7: Speedup comparison of four kernel sampling methods on the Rodinia and CASIO benchmark suites. We present the

speedup in log-scale; the average speedup is on the far right.
GPGPU Workload (R?girgia Suite)

ML Workload (Casio Suite)
87.9

60

401

Error (%)

N
o O

o > AN 2 e,‘ (2 X N o
& F PR FTFE I E LT
O S ¥ > QS ol @ <
C o d7 < < " 9 23 S
* FCHIVCASIEN N Q7 Q,(}, B B &
&
©

< R < R X R X -, RS "
B S R I
¢ L& & A &% &K ¢
T FEFE FFE & HHFEE S
¢ FF S S °
< A &

[I:I PKA Il Sieve [Photon 1 STEM+ROOT (Ours)]

Figure 8: Sampling error comparison of four sampling methods on Rodinia and CASIO suites sampling methods. STEM shows
near-zero sampling error on the CASIO suite as it leverages the massive number of kernel calls and their execution time

distributions.

Table 3: Average speedup (x) and error (%) of 5 kernel sam-
pling methods on 3 GPU benchmark suites. Some values not
available due to excessive overhead (details in Sec. 5.6).

Rodinia Huggingface
Methods (GPGPU) CASIO (ML) (LLM & ML)
Speedup | Error | Speedup | Error | Speedup Error
(x) (%) (x) (%) (x) (%)
Random* 7.09 26.67 984.87 28.39 1004.97 2.40
PKA 8.35 34.85 1425.01 29.26 | N/A (Profiling overhead)™
Sieve 2.62 6.63 391.09 23.75 | N/A (Profiling overhead)™
Photon 2.84 2.71 168.61 9.85 |N/A (BBV process overhead)**
STEM 3.00 0.93 109.595 0.36 31719.057 | 0.57

*Uniform random; We sample 10% and 0.1% of kernels for Rodinia and
CASIO, respectively.
**Profiling and BBV processing overhead is estimated at up to 78.68 days.

Huggingface speedup/error results are shown in Figure 9, where
our method is only compared with random sampling. As a full sim-
ulation was intractable for most workloads, we used the profiler’s
cycle counts to calculate speedup and error of sampling methods.

Rodinia Suite. The speedup and error evaluation results are
shown in the first column of Table 3. STEM significantly outper-
forms prior methods in reducing sampled simulation error. While
kernel sampling methods generally yield lower speedups on the
Rodinia suite, STEM effectively balances speedup and error. STEM
achieves speedups comparable to Sieve and Photon while reducing
the error from 2-6% to below 1%.

Results on irregular workloads from the Rodinia suite demon-
strate the robustness of each kernel sampling method. For instance,
in gaussian, the same kernel is invoked repeatedly for Gaussian
elimination, but the number of executed instructions decreases

steadily, approaching zero in later iterations. In heartwall, while
the same kernel runs multiple times, the first invocation is much
shorter; subsequent invocations execute roughly 1500X more in-
structions. Similarly, in pf_float/naive, certain kernels are up
to 100x longer than others. For workloads like heartwall and
pf_naive, PKA and Sieve struggle to distinguish kernels with dras-
tically different execution times. For example, sampling only the
first short kernel in heartwall leads to a severe underestimation
of total execution time, resulting in a massive 99.9% error. Likewise,
in bf's and gaussian, where kernel execution times vary widely,
PKA and Sieve often sample too few kernels, leading to significant
total time estimation errors.

For gaussian and heartwall workloads, we manually hand-
tuned PKA and Sieve to randomly sample kernels instead of the
first-chronological kernel, and the error dropped significantly (e.g.,
heartwall: from 99.9% to 37.69% and 5.27% for PKA and Sieve).
Although we use the improved results in our evaluation table and
figures, this tuning must be done per workload, highlighting a key
limitation of these approaches. In contrast, STEM automatically
adapts its sample size based on the runtime variability of profiled
kernels. STEM’s adaptivity leads to substantially lower error with
only a modest increase in simulation cost, achieving a better tradeoff
between accuracy and speedup without hand-tuning. We discuss
this tradeoff further in Section 5.3.

CASIO Suite: A Massive number of kernel calls involved in
the CASIO suite enabled STEM to leverage its statistical modeling
capabilities fully. PKA and Sieve, which sample only one or a few
kernels per cluster, suffer from significant sampling errors. Where
Photon reduces error from ~30% to 9.85% with a slight sacrifice in
speedup, the remaining error accounts for the BBVs’ incapacity to

Swift and Trustworthy Large-Scale GPU Simulation with Fine-Grained Error Modeling and Hierarchical Clustering MICRO ’25, October 18-22, 2025, Seoul, Republic of Korea

ML Workloads (Casio) LLM & ML Workloads (Huggingface)

e PKA 3571, STEM+ROOT
80 e Sieve . e Random
Photon 30
60 e STEM+ROOT |25 xRandom mean
) .
> .
= ° 2.0
5 40 . |20,
=
w SlevemeanxPKAmea" 151«
*
20 .Phot;n mégn : 107 STEM+ROOT mean
.
x « 04 ° 0.5 X
0{ = §¢ STEM+ROOT mean

102 108 10* 1000 10000 100000
Speedup (log scale)

Figure 9: Scatter plot showing the speedup (log scale) and
error (%) of different kernel sampling methods on CASIO
suite (left) and Huggingface suite (right).

fully distinguish kernels executed in different contexts or with var-
ious inputs. STEM achieves a significantly lower error of just 0.36%
while maintaining a 109.60X speedup, representing a 27.6-81.89x
reduction in error compared to previous methods. Furthermore, by
tuning the hyperparameter (i.e., the error bound €), it can achieve
additional speedup. Our sensitivity analysis in Sec. 5.3 shows that
we can reach a speedup of 172.30X with only 0.80% error.

Like Rodinia, we tuned Sieve to use random sampling for the
ssdrn34-infer and unet-infer/train workloads, where first-
chronological sampling resulted in significant errors. For CASIO
workloads, we turned off Sieve’s additional clustering using KDE
(kernel density estimation), as it led to oversampling and limited
speedups to below 2 — 5X on each workload.

Huggingface Suite: The Huggingface workloads closely align
with how recent GPUs are utilized during ML/LLM serving, exhibit-
ing long execution times of ~30 minutes (Table 2). STEM signifi-
cantly outperformed the uniform random sampling, achieving a
31,719% speedup with an error that is 4.25X smaller. In both the
CASIO and HuggingFace suites, the observed sampling error is
significantly smaller than our theoretical error bound of 5%, indicat-
ing that our statistical modeling and clustering approach is highly
effective for ML workloads with statistically analyzable runtime
behavior, as discussed in our observations (Sec. 2.1).

5.2 Limitations of current sampling methods

While the diverse and unpredictable runtime behaviors of GPU
kernels pose a significant challenge for accurate kernel sampling
(as discussed in Section 2.1), prior methods that rely on instruction-
level or control-flow-based features often fail to distinguish kernels
with substantially different execution characteristics. Conventional
kernel signatures are limited in capturing the wide and sparse exe-
cution time distributions commonly observed in GPU workloads,
as they overlook dynamic runtime context and the kernel’s sensitiv-
ity to the underlying hardware, such as the memory hierarchy. In
contrast, using fine-grained clustering, ROOT differentiates kernels
that share the same code but differ in runtime behavior. STEM then
adaptively assigns sample sizes based on variability within each
cluster, allocating more samples to unstable kernel clusters and
improving sampled simulation accuracy.

Figure 10 illustrates this limitation of current kernel signatures:
each histogram shows a group of kernels considered "identical"
according to previous methods. For example, in cluster 0 of PKA, all
kernels with execution times ranging from 2 s to 11 ps are treated

Cluster 0 of PKA Cluster 0 of Sieve Cluster 0 of Photon

60 40
0 1l 30 600 i
| H 20 400 ‘
20 ol 11 b 200
PRI R L N
2) oMl L g
o 5 10 6 8 00 225 2.50 2.75
] Cluster1 of PKA Cluster 1 of Sieve Gluster 1 of Photon
@ 1000 i
% 40 30 I
500 20 . 20 I i i
b |1 el il
1
0 2 4 00 5 10 0 1.3 1.4 .

Kernel Execution Time (us)
Figure 10: Distribution of execution times for kernels
grouped as "identical" by previous sampling techniques, us-
ing the DLRM workload from the CASIO benchmark suite.

[£=3% Il £=5% [£=10% [£=25%

a(\

\\}
(\ﬁe o ﬁ(\KE NN (\ﬁe @ (\Ke (v
d\‘((\\' x\e(,“ & (“(\ Kc.“ ,5 AN 3,)(’(. “’&‘ X e

.ﬁ
A
e eS8 3“ 6\‘

[£=3% Il £=5% [£=10% [£=25%

4

2,00
o3

21 018

0 4

\“xe (3\“ \(\&e “3\“ \(\&e ,da\(‘ ’d"“\(\ \‘\ﬁe “3\(\ \‘\(e “a\“ «\ea(\

‘oe(‘- \oe(“ 6\(((‘ 6\(((\ E(es(\ (“: d‘\'ﬁb‘ 6(\313‘ \)(\e

Error (%)

Figure 11: Impact of varying the error bound (e) on speedup
and sampling error for STEM. Larger ¢ values enhance
speedup with increased error.

as identical kernels by PKA’s kernel selection algorithm. PKA selects
one sample from this group and assumes the rest behave identically,
leading to significant errors in sampled simulation. Photon performs
slightly better in distinguishing kernels, but all kernels shown in the
histogram still share a single common proxy for sampled simulation,
potentially missing the runtime diversity.

5.3 Tradeoff between the sample size and error

As increasing the number of sampled kernels reduces simulation
error and diminishes speedup, the core challenge is identifying a
sweet spot that minimizes error while maintaining high speedup.
As PKA and Sieve assume sampling only one or a few kernels per
cluster is sufficient, this leads to high sampling error as shown in
Table 3, despite its aggressive speedup. Photon improves upon this
by comparing GPU BBVs for each kernel, but it still relies on a fixed
threshold of 95% and does not adjust sample sizes based on kernel
behaviors. In contrast, STEM adaptively determines sample sizes
based on the runtime fluctuation of kernels. STEM selects multiple
samples for kernels exhibiting wide or multi-modal histograms to
capture their heterogeneous behavior accurately. This fine-grained
approach enables STEM to achieve near-zero sampling error while
preserving much of the simulation speedup.

Figure 9 shows this behavior in a scatter plot with speedup on the
x-axis and sampling error on the y-axis. Black x markers indicate

MICRO 25, October 18-22, 2025, Seoul, Republic of Korea

Table 4: Average error (%) of sampled simulation on 11 Ro-
dinia and 6 LLM workloads across various GPU microarchi-
tectures using kernel sampling methods.

*PKA *Sieve Photon | STEM (ours)
parch Changes
error (%) | error (%) | error (%) error (%)

Baseline 20.06 24.40 5.96 2.03
Cache size X2 22.66 25.67 5.44 1.93
Cache size X% 16.65 22.61 5.33 1.96

#SM X2 17.90 28.18 6.49 2.28

#SM X% 23.68 23.08 5.14 2.30

*We observe high error on Rodinia workloads, as we use smaller
configurations to run full cycle-level simulation for error measurement.

the mean performance of each method. Our method consistently
achieves near-zero error with only modest speedup loss, effectively
capturing the sweet spot in the speedup—error tradeoft.

Sensitivity Analysis on the Error Bound. Using the CASIO
benchmark suite, we evaluated how varying the error bound e
impacts the tradeoff between simulation speedup and sampling
error. We tested € values of 3%, 5%, 10%, and 25%, with a fixed 95%
confidence level. As shown in Figure 11, smaller € values reduce
sampling error but lower speedup due to more samples, while larger
values yield higher speedup at the cost of accuracy. For instance, at
€ = 3%, STEM achieved a 0.18% mean error with 76.46X speedup,
whereas € = 25% gave 228.53% speedup with 2.00% error. These
results show that STEM enables flexible tuning to balance accuracy
and efficiency.

5.4 Validating STEM on various GPU
microarchitectures

We evaluate STEM’s robustness using a design space exploration
(DSE) experiment on the cycle-accurate simulator MacSim [16]. The
results suggest that the sampling error on new hardware remains
comparable to the error on the baseline machine, even if we use
the same sampling information extracted from the execution time
profile. We modified key microarchitectural parameters, including
L1/L2 cache sizes and the number of streaming multiprocessors
(SMs), to model GPUs with varying hardware configurations. We
selected 11 Rodinia and 6 ML workloads from the HuggingFace
suite and reduced their sizes to run a full simulation within a few
days on MacSim.

Table 4 reports the average error of each method across different
hardware variants. The error scale compared to Table 3 increased
due to the smaller input configurations and fewer kernel calls for
the Rodinia workloads. STEM consistently maintains significantly
lower error than baseline methods on each hardware change. Al-
though such hardware differences cause slight variations in error,
STEM'’s low error across variants highlights the robustness of its
execution time—based sampling strategy, supported by its statisti-
cally rigorous design. We sampled six different LLM and Rodinia
workloads and compared the estimated cycle counts of each method
against ground truth, as shown in Figure 12. PKA and Sieve often
under- or overestimate total cycle counts depending on the work-
load, while STEM consistently produces accurate estimates, even
under significant microarchitectural changes.

Second, we evaluate cross-GPU portability by using sampling in-
formation from the NVIDIA H100 and measuring the sampling error

Chung et al.

[PKA Il Sieve [Photon I STEM [Real
bloom o gpt2

Cycles (x 10°)
N
o
o o
t %
Cycles (x 108
=
o
o o

« Q;P < Q;P o « Q/*) < Q;P &
£ @ INPAN O & @ INPRN N
& XS S s N e S
A Y & x 0}‘\ g Y X%
S * S *
o bfs o gaussian
S 5000 7 T S 5000
X kS
o 2500 & 2500
o o
S 0 S 0
@) @ D DD h) @ D DD
(?\Q e@*- ®<?+‘“@+ @,,?+ (3}@ e@- ®@+‘“@+ @(?+
& XS S s xS e &
A Y N c}‘\ A Y X%
S * S *
pf_naive srad_v1

Cycles (x 103)

= N

o o

o o

o o o

%) U

S

s, ‘
Cycles (x 103)

N w

w o

o o o

Figure 12: Cycle count comparison between sampled and
full simulation across GPU microarchitecture changes using
various kernel sampling methods and workloads.

‘1ol HDDHDDDDD

AP\ AP\ ARIPA\SIPRIAY AYIPA\NY AR\ A IEANY
S g e o ey ;«\éeﬁ%“:«\gna\ e?
p& et AN N ‘e‘?“‘eﬁ"\ ((;5(“(;66((\ Rt

=
o

w

Error (%)

Figure 13: Sampling kernels with STEM on H200 using kernel
profiles from H100 results in low sampling error.

on the newer H200 GPU, which features increased global memory
capacity and bandwidth. As shown in Figure 13, sampling decisions
made on the H100 result in an average error of 5.46% when applied
to the H200. The d1rm workload, known for its memory-intensive
behavior and random access patterns due to large embedding tables,
exhibits the highest error due to the hardware’s significant memory
subsystem upgrades.

Across both experiments, despite hardware-induced changes in
absolute kernel execution time, the underlying kernel behaviors and
their microarchitectural characteristics captured by STEM using
the execution time distributions remain effective for identifying
representative kernels—yielding sampling errors on various GPU
microarchitectures.

5.5 Validation on microarchitectural metrics

We conducted a detailed microarchitectural behavior comparison to
evaluate how well the sampled workload represents the full work-
load beyond total execution time. We collected 13 metrics from four
microarchitectural categories: (1) shared/global memory access pat-
terns, (2) L1/L2 cache accesses, (3) 16/32-bit floating-point operation
counts, and (3) warp execution/branch efficiencies. These provide a
comprehensive view of the workload’s interaction with key GPU
subsystems, offering insights into memory hierarchy utilization,
computational precision, and execution control efficiency. We pre-
dicted these metrics using a weighted sum over the sampled kernels,
following the same approach used to estimate total execution time

Swift and Trustworthy Large-Scale GPU Simulation with Fine-Grained Error Modeling and Hierarchical Clustering MICRO ’25, October 18-22, 2025, Seoul, Republic of Korea

DRAM read/write access Shared LD/ST

©
S

R N | Sampled HEE Full » [Sampled Bl Full
22, 52 60
S3 471 471 5 39.60 39.60
= F#* v 40
29 182 1.82 9%
52 29207 62 622
= 0- 0-
DRAM read DRAM write Shared LD Shared ST
20 Global LD/ST 80 L1/L2 Cache hit rate
[Sampled Il Full — [Sampled Il Full
‘g,g; 60 X 60
£E 41.74 41.74 o
#3840 52 a0 36.50 36.56
25 19.71 19.71 v
X220 T 201 11.59 11.60
0 0
Global LD Global ST L1 hitrate L2 Read hit rate
3 FP16/FP32/INT32 instrs 200 Warp/Branch efficiency
» [Sampled EEE Full [Sampled BBl Full
8201 g0 o 5| 280
£5 2279 U 5279 s 99.69 99.69
R R RN TN ' 100
539 10 5
e G 504 31.82 31.82
o
FP16 FP32 INT32 Warp execution Branch
efficiency efficiency

Figure 14: Comparison of microarchitectural metrics be-
tween the full workload and the sampled workload. We used
the bert_infer workload of the CASIO benchmark suite.

in Section 3.1. Figure 14 shows near-zero differences between the
sampled and full simulations across all metrics for the bert_infer
workload in the CASIO suite. We observe similar trends across all
other CASIO workloads. We used the same error bound of € = 5%,
as it empirically achieved near-zero error in microarchitectural
metrics without significant compromise in speedup.

These results suggest that STEM accurately captures diverse mi-
croarchitectural behaviors, despite relying primarily on execution
time for sampling. The sampled simulation with STEM reflects the
runtime characteristics of the full workload-a critical requirement
for GPUs, where the interplay of parallelism, memory hierarchy,
and control flow shapes performance. For this evaluation, we as-
sumed an optimally warmed-up cache and focused on L2 read hit
rate, as GPU cache policies guarantee 100% L2 hit rate for writes.

5.6 Scalability of STEM on large workloads

STEM is significantly more scalable than prior methods, as it relies
solely on kernel-level execution time data and employs an efficient
hierarchical clustering algorithm. In contrast, methods such as PKA
and Sieve depend on instruction- or basic-block-level statistics col-
lected per warp, incurring substantial overhead due to frequent
atomic operations and heavy reliance on limited GPU hardware
counters. These methods often require multiple kernel replays and
experience slowdowns from contention, making them impracti-
cal for large-scale workloads. While Photon collects BBVs more
efficiently than instruction counts, it still suffers from high time
and space overhead when comparing BBVs for every kernel. Its
comparison cost grows quadratically with the number of kernels,
becoming infeasible for workloads with millions of kernel invoca-
tions. Photon’s time complexity ranges from O(NSd) to O(N?%d),
where N is the number of kernels, S is the number of samples,
and d is the BBV dimensionality. As a result, Photon cannot scale
effectively to workloads with millions of kernel calls. In contrast,
STEM achieves a lower complexity of O(N log K) to O(N log N)
in the worst case, where K is the number of subclusters.

Table 5: Comparison of profiling overheads across bench-
marKk suites relative to original uninstrumented wall time.
Some values were omitted due to excessive overhead.

Sampling Profiler used, Rodinia CASIO | Huggingface
methods metrics collected (GPGPU) (ML) (LLM & ML)
llecti
PKA [2] NCU, collecting 3557% | 3704.23x N/A
12 metrics
Sieve [24] | NVBIL collecting 94.14x | 293.58x N/A
num. of instrs
NVBit, collecting
Photon [21] & processing BBVs 12.81x 38.58% N/A
STEM NSYS, collec?lng 1.54x 5.53% 1.33x
(ours) kernel exe. time

Table 5 illustrates that profiling overhead increases significantly
with larger workloads. We measured the profiling overheads of our
method and prior approaches using the profilers noted in our ex-
periment setup. PKA and Sieve introduce overheads of 200xX-3000x
on the CASIO suite, rendering them impractical for large work-
loads such as those from HuggingFace. While Photon incurs less
overhead for BBV collection, its high-dimensional BBV compar-
ison algorithm introduces quadratic time complexity, making it
infeasible for workloads like GPT-2, which contains over 50 million
kernel invocations with 800+ BBV dimensions per kernel before the
dimension reduction with PCA. STEM reduces profiling overhead
by 53.07X to 669.60x on CASIO, making it practical for modern
ML workloads. Unlike prior methods, whose overhead grows with
kernel count, STEM’s profiling remains lightweight and scales well
due to fixed post-processing cost. For HuggingFace models, prior
methods would require up to 78.68 days of profiling and processing
per workload, assuming the same overhead ratio.

6 Discussion

6.1 Potential limitations of using execution
time in kernel sampling

Leveraging kernel execution time for workload sampling provides
three key advantages: accuracy through fine-grained sampling, sta-
tistical feasibility supported by a rigorous error model, and scalabil-
ity due to minimal profiling overhead. While these advantages are
highly effective, some potential concerns arise with our approach.

A potential concern of STEM is that it depends on hardware-
dependent data for sampling. When we perform profiling and sam-
pling on hardware A but run the simulation on hardware B, the
sampled kernels from hardware A may fail to capture the work-
load’s runtime behavior on hardware B. For instance, a kernel with
consistent execution time on hardware A might display heteroge-
neous runtime behavior on a new GPU microarchitecture. In such
cases, the original samples may not fully represent the runtime
variability on the target hardware, potentially compromising the
accuracy of the sampled simulation. While STEM is not entirely
immune to this issue, STEM’s fine-grained kernel analysis and adap-
tive sampling strategy minimize such hardware-dependent errors.
The core of this resilience lies in STEM’s adaptive sampling, which
naturally allocates more samples to kernels sensitive to microarchi-
tectural changes. Typically, kernels with highly varying runtimes
at every invocation, often those whose performance relies heavily
on the memory system, are most susceptible to hardware changes.

MICRO 25, October 18-22, 2025, Seoul, Republic of Korea

Because STEM samples these variable kernels more frequently on
the source hardware, it preemptively captures a diverse range of
behaviors. This inherent oversampling of sensitive kernels ensures
that the approach remains robust, even when microarchitectural
changes on the target hardware affect their performance. Therefore,
STEM often shows much higher accuracy than previous works
using hardware-independent parameters, as they only take one
or significantly fewer samples from each kernel or cluster. This
minimizes hardware-dependent inaccuracies in applications like
hardware design space exploration (DSE).

To illustrate this principle, consider two kernels: Kernel-A, which
is memory-bound and exhibits high runtime variability, and Kernel-
B, which is compute-bound and shows stable performance. Based
on its analysis, STEM would select many representative samples
from Kernel-A but only a few from Kernel-B. Now, consider a
microarchitectural change on the target hardware—such as a new
cache replacement policy, page management, or prefetcher behavior.
This change would likely impact the performance of the memory-
sensitive Kernel-A but have a minimal effect on Kernel-B. Even
if the change alters the execution of Kernel-A, the impact on the
overall estimated performance remains low due to the large number
of samples already chosen from it. Therefore, such deviations are
unlikely to affect the simulation results’ accuracy significantly.

Our empirical observations support STEM’s robustness. As shown
in Figure 14, kernels within the same cluster tend to maintain
similar microarchitectural behavior, even though we cluster them
solely based on execution times. This homogeneity suggests that
while a sampled simulation cannot be identical to a full simulation,
the selected samples will likely preserve their core microarchitec-
tural characteristics despite hardware changes. Furthermore, our
experiments confirm this resilience. In both DSE and hardware-
switching scenarios (Figure 12, 13), our methodology proves reliable
and demonstrates superior accuracy compared to previous methods.

6.2 Limitations and Future works

Multi-GPU workloads. Extending to multi-GPU workloads is
a promising direction for future work. Supporting multi-device
environments with STEM requires careful handling of both syn-
chronous and asynchronous communication kernels and consider-
ation of data/control dependencies, computation-communication
overlap, and inter-device synchronization. Future extension of our
work could involve using Chakra ET (execution trace), which is a
standard method of representing multi-device ML workloads with
a DAG (directed acyclic graph) of operations and dependencies [36].
Node and edge sampling on such DAG-style ETs would be a decent
starting point to analyze data and control dependencies between
computation and communication kernels with implicit synchro-
nizations between devices. Addressing this problem would be a
foundational step toward fast and accurate sampling for large-scale,
multi-GPU simulators [19, 42].

Warmup of hardware states in sampled GPU simulations.
STEM'’s selection algorithm for representative kernels assumes
ideal warmup of cache and hardware states. However, certain mi-
croarchitectural components, such as the L2 cache, may retain state
across kernel boundaries in real hardware, potentially leading to
discrepancies in cache reuse during sampled simulation. Efficient

Chung et al.

and accurate warmup of architectural and microarchitectural states
in sampled GPU simulations remains an open research problem
that has yet to be fully addressed in the GPU domain.

Despite this limitation, we observe that kernel-level simulation
time in most workloads evaluated in this paper is sufficiently long
to mitigate the impact of imperfect cache warmup. For instance,
assuming an L2 cache size of 10-50 MB, a few million warp-level
memory instructions are typically enough to saturate the GPU
caches; a negligible fraction (less than 0.1%) of total instructions
in the majority of our benchmarks. To quantify the potential ef-
fect of inter-kernel cache reuse, we performed an extreme-case
experiment by flushing the L2 cache between every kernel. The
results show minimal accuracy degradation: for the STEM method,
error increased by only 0.70% on Rodinia and 0.07% on CASIO. For
comparison, PKA exhibited 0.92%, Sieve 4.08%, and Photon 0.61%
error on Rodinia. This limited impact is due to the large memory
footprints of the kernels, as most cache reuse occurs within kernels
rather than across them.

Exploring alternative sampling granularity, such as grouping
multiple consecutive kernels as the minimum unit, could help cap-
ture inter-kernel cache effects. However, this would likely introduce
substantial overhead, significantly impacting the speedup benefits
of sampling. Another potential solution, hardware state check-
pointing, explored in CPU simulation [39], may provide accuracy
but remains impractical on modern GPUs due to the significant
performance and storage costs of saving large L2/L3 states (e.g.,
B100, MI300X) and register files. Nonetheless, lightweight warmup
strategies, such as inserting warmup instructions or short warmup
kernels, may offer practical benefits with minimal simulator modi-
fications.

7 Related works

7.1 Workload sampling for CPUs

SimPoint [9] uses Basic Block Vectors (BBVs) to identify representa-
tive regions in CPU workloads. It segments execution into slices and
applies K-means clustering on BBVs, enabling sampled regions to re-
flect full workload behavior across different architectures. SMARTS
[43] and SimFlex [41] build on SimPoint by incorporating statistical
techniques such as matched-pair comparison to reduce simulation
points. Extensions like those by Perelman et al. [31], BarrierPoint,
and LoopPoint [3, 33] adapted SimPoint for multi-threaded work-
loads. Due to GPUs’ high thread-level parallelism (TLP) and distinct
execution characteristics, new sampling techniques have been de-
veloped specifically for GPU workloads. However, they share the
same core goal of representative workload sampling.

7.2 Kernel-level workload sampling for GPUs

TBPoint [10] uses microarchitecture-independent metrics obtained
from profiling to apply hierarchical clustering, grouping similar
kernels, and then sampling the kernel closest to the center of each
group. PKA [2] extends this idea by performing k-means clus-
tering on feature vectors from hardware-profiled data, sweeping
through k=1 to 20 to find the optimal k and then sampling the first-
chronological kernel from each cluster. On the other hand, sieve
[24] only uses the number of instructions as the feature vector to
reduce profiling overhead. It stratifies the kernels into three groups

Swift and Trustworthy Large-Scale GPU Simulation with Fine-Grained Error Modeling and Hierarchical Clustering MICRO ’25, October 18-22, 2025, Seoul, Republic of Korea

based on the degree of instruction count variation across different
invocations of the same kernel code. Sieve then samples the first-
chronological one for each kernel with the most dominant CTA size.
Photon [21] employs online analysis to dynamically determine at
runtime whether a basic block (BB), warp, or kernel has stabilized,
enabling it to skip ahead to the next simulation phase. It collects
and compares GPU BBVs across all kernel invocations to enable
accurate kernel-level sampling.

7.3 Other sampling methods in GPU workloads

Intra-kernel sampling is a technique for finding simulation points
within a single kernel. GPGPU-MiniBench [44] performs intra-
thread-block analysis, while TBPoint and PKA incorporate intra-
kernel sampling to gain further speedup beyond kernel-level meth-
ods. These techniques detect stable runtime behavior and, once
observed, skip remaining simulation phases. Photon also uses on-
line analysis to assess the stability of basic blocks (BBs) and warps
for effective intra-kernel sampling. Since kernel-level sampling
is orthogonal to warp- or BB-level sampling [2, 21], our method
can be combined with cases of few kernel calls or long-running
kernels. SeyyedAghaei et al. [34] accelerate GPU simulation using
small-scale models. Still, their approach is limited to workloads that
scale linearly with the number of streaming multiprocessors (SMs),
covering only a narrow class of GPU applications.

8 Conclusion

This paper introduces STEM, an accurate, scalable, and statistically
robust kernel-level sampling solution for large-scale GPU work-
loads. STEM and ROOT leverage key observations on the heteroge-
neous runtime characteristics of modern GPU kernels, particularly
how their execution time distributions provide valuable insights
for accurate sampling. STEM offers a fast and reliable kernel sam-
pling solution with high speedup and minimal error. Our evaluation
demonstrates that our work significantly reduces sampling error
on cycle-level simulations with design space exploration (DSE) ex-
periments. Moreover, STEM exhibits excellent scalability across
modern large-scale GPU applications.

9 Appendix

9.1 Solution for Problem 1.
Leta; = pj, bj = Niza?, andc = (e); Niyi/zl,a/z)z for simplicity.
Then, the Problem 1 becomes as below:

minimize E a;m;
mi -
1

bi
— —-c<0

- m;
i L

and m; >0 for Vie {0..k —1}.

subject to

The corresponding Lagrangian function £ can be written as:

L(m}) = Zmiai+/1k . (Z % -0 +Zai < (—my).

The solution m* must satisfy the following four Karush-Kuhn-
Tucker (KKT) conditions:

e Stationary Condition: VL(m*; 1) = 0 (a)
e Primal Feasibility: 3}; bj/m] —c < 0 (b)
and (-m}) < 0 for Vi € {0...k — 1} (c)
e Dual Feasibility: A; > 0 for Vi € {0...k} (d)
e Complementary Slackness: A - (X; bi/m] —¢) + X; 4; -
(=m;)=0 (e)

From (b), (c), and (d), we can see that in each term, either one of 4;
or the multiplied term should be zero. Since we are assuming m; > 0,
A; = 0for Vi € {0...k—1}. Also, from (a), ai—/lkbi/(m;‘)z—/lim:.‘ =0.
Since a; # 0, A # 0, and thus the equality of (b) holds, and thus
m} = \/Axbi/a; for Vi € {0..k — 1}.

By putting this into (b), we obtain }}; v/a;bi/A;r = ¢ and thus
A = (2 Vaib;/c)?. Therefore, the solution to the non-linear opti-
mization problem is:

VZjaibi b
m; = NI 2 forvie {0..k — 1}.
C aj

9.2 Proof of Theorem 3.1

Proor. By the definition of sampling errors,

(7)y2 2
Z(Ni(j))z—(gi j)) < (—e ZNi(j),ui(j)) 9)

ml(Z1-a/2 7

satisfies for arbitrary Vj € {0,.., N — 1}
€
Z1-af2
following inequality: ; sz. < (X xj)2 when x; > 0 for Vj.

We then sum (9) by j to get

()2 2
(~)2(U,~) €
S =) 2

i Ni(j),u;j) is positive for every j, we apply the

Since

2
(Z N,-(j)ui(”) (10)

Z1-a/2 7 7
) 2
€ ()
< N, 11
(Zl—a/z) Z i Hi)

ij
The sum }};; in (11) is the same as summing through every cluster

in the union set U?’:_ol {CZ(J) }. By substituting
J

S NI and &2 (2 (a)?

~ J J ~2 _ J]

o= 4 N7 and ¢° = E (Nl.) —m(j) R
1) 1] i

we transform (11) into the following inequality:

(fi+21-g/20) = i
i
This inequality implies that the cluster set union also gives bounded

sampling error under a 1 — & confidence interval.

‘ <e. (12)

[m]

Acknowledgments

We thank the anonymous reviewers for their insightful feedback.
This work was supported in part by NSF grants CCF-2316176 and
CCF-2452082. We also thank Georgia Tech’s CRNCH (Center for
Research into Novel Compute Hierarchies) and Jaewon Lee for their
valuable discussions and guidance.

MICRO 25, October 18-22, 2025, Seoul, Republic of Korea Chung et al.

References (IPDPSW). IEEE, 522-531.
[1] AMD. 2025. ROCProfiler documentation. https://rocm.docs.amd.com/projects/ (24] Mahmood Naderan—Tahan, Hossein SeyyedAgha'el, and Lieven Eeckhout. _2023'
rocprofiler/en/latest/. Sieve: Stratified GPU-Compute Workload Sampling. In 2023 IEEE International
[2] Cesar Avalos Baddouh, Mahmoud Khairy, Roland N. Green, Mathias Payer, and Symposium on Performance Analysis of Systems and Software (ISPASS). 224-234.
Timothy G. Rogers. 2021. Principal Kernel Analysis: A Tractable Methodol- https://domrg/lOAl109/ISPASSS7527A20A23A(A)0030 .
ogy to Simulate Scaled GPU Workloads. In MICRO-54: 54th Annual IEEE/ACM (25] Humza Naveed, Asad Ullah Khan, Shi Qlu’ Muhammad Saqlb, Sgeed Anwar,
International Symposium on Microarchitecture (Virtual Event, Greece) (MICRO Muhammad Usman, Naveed Akhtar, Nick Barnes, and Ajmal Mian. 2024. A
°21). Association for Computing Machinery, New York, NY, USA, 724-737. Comprehensive Overview of Large Language Models. arXiv:2307.06435 [cs.CL]
https://doi.org/10.1145/3466752.3480100 [26] NVIDIA. 2025. CUDA C++ Programming Guide. https://docs.nvidia.com/cuda/
[3] Trevor E. Carlson, Wim Heirman, Kenzo Van Craeynest, and Lieven Eeckhout. cuda-c-programming-guide/ lndexAhtnAll#warp-shufﬂe-functmns.
2014. BarrierPoint: Sampled simulation of multi-threaded applications. In 2014 [27] NVIDIA. 2025. CUDNN Documentation. Retrieved Jan 17, 2025 from https:
IEEE International Symposium on Performance Analysis of Systems and Software //docs.nv1d1a4com/deepleam.mg/cudnn/latest/apl{overvnew.html
(ISPASS). 2-12. https:/doi.org/10.1109/ISPASS.2014.6844456 [28] NVIDIA. 2025. NVIDIA stght Compute. Retrieved Jan 17, 2025 from https:
[4] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer, Sang- //developennwdmcom/nmg}}tf compute)
Ha Lee, and Kevin Skadron. 2009. Rodinia: A benchmark suite for heterogeneous (29] NVIDIA. 2025. NVIDIA I_Vs’ght Systems. Retrieved Jan 17, 2025 from https:
computing. IEEE, Piscataway, NJ, USA, 44-54. //developernvidia.com/nsight- systems '
[5] Euijun Chung, Seonjin Na, and Hyesoon Kim. 2024. Allegro: GPU Simulation [30] Adam P:?szke, Sam Gross, and Franc1scp Ma§sa etal. 201'94 PyTorch: An Imperative
Acceleration for Machine Learning Workloads. In Machine Learning for Computer Style, ngh-Performfmce Deep Learning Library. arXiv:1912.01703 [esLG]
Architecture and Systems 2024. [31] ErezPerelman, Marzia Polito, J-Y Bouguet, Jack Sampson, Brad Calder, and Carole
[6] Michael Davies, lan McDougall, Selvaraj Anandaraj, Deep Machchhar, Rithik Dulong. 2006. Detecting phases in parallel applications on shared memory archi-

tectures. In Proceedings 20th IEEE International Parallel & Distributed Processing
Symposium. IEEE, 10-pp.
[32] Huanzhi Pu, Rishabh Ravi, Shinnung Jeong, Udit Subramanya, Euijun Chung,

Jain, and Karthikeyan Sankaralingam. 2024. A Journey of a 1,000 Kernels Begins
with a Single Step: A Retrospective of Deep Learning on GPUs. In Proceedings of
the 29th ACM International Conference on Architectural Support for Programming

Languages and Operating Systems, Volume 2 (La Jolla, CA, USA) (ASPLOS '24). Jisheng Zhaq, Chihyo Ahn, and Hyesoop Kim. 2025. Hardware vs. Softwgre
Association for Computing Machinery, New York, NY, USA, 20-36. https://doi. Impllementatlon of Warp-Level Features in Vortex RISC-V GPU. arXiv preprint
0rg/10.1145/3620665.3640367 arXiv:2505.03102 (2025).

[33] Alen Sabu, Harish Patil, Wim Heirman, and Trevor E Carlson. 2022. Loop-

[7] Lieven Eeckhout. 2022. Computer Architecture Performance Evaluation Methods
(1st ed.). Springer Cham.)) . .

(8] Lieven Eeckhout. 2024. RIP Geomean Speedup Use Equal-Work (Or Equal-Time) 2022 IEEE International Symposium on High-Performance Computer Architecture
Harmonic Mean Speedup Instead. IEEE Computer Architecture Letters (2024). (HPCA,)' IEEE, 6047618,’ X

[9] Greg Hamerly, Erez Perelman, Jeremy Lau, and Brad Calder. 2005. SimPoint 3.0: Hossein SeyyedAghéel, Mz}hmood Naderan-Tahan, gnd Lieven Ee?khout. 2924'
Faster and More Flexible Program Phase Analysis. J. Instr. Level Parallelism 7 GPU Scale-Model Simulation. In 2024 IEEE International Symposium on High-

Point: Checkpoint-driven sampled simulation for multi-threaded applications. In

[34

(2005). https://api.semanticscholar.org/CorpusID:11937761 Performance Computer Architecture (HECA)- IEEE, 1125-1140.

[10] Jen-Cheng Huang, Lifeng Nai, Hyesoon Kim, and Hsien-Hsin S. Lee. 2014. [35] Joram Soch. 2021. The_Book_ofStatzsnca_l Proofs. Retrieved Jan 15, 2025 from
TBPoint: Reducing Simulation Time for Large-Scale GPGPU Kernels. In 2014 ht'tqu://StatPronfboOk'g'thUb'IO/P/“O”“.' lincomb
IEEE 28th International Parallel and Distributed Processing Symposium. 437-446. (36] Srmlv?s Sridharan, Tackyung Heo, Louis Feng, Zhaodong Wang, Matt Bergeron,
https://doi.org/10.1109/IPDPS.2014.53 Wenyin Fu, Shengbao Zheng, Brian Coutinho, Saeed Rashidi, Changhai Man,

[11] Rodrigo Huerta, Mojtaba Abaie Shoushtary, José-Lorenzo Cruz, and Anto- etal 2023, Chakra: Advancing perflormanc? benc}}marking and co-design using
nio Gonzalez. 2025. Analyzing Modern NVIDIA GPU cores. arXiv preprint standardized execution traces. arXiv preprint arXiv:2305.14516 (2023).

arXiv:2503.20481 (2025). [37] Yifan Sun, Trinayan Baruah, Saiful A. Mojumder, Shi Dong, Xiang Gong, Shane
[12] Huggingface. 2025. Huggingface. Retrieved Jan 17, 2025 from https://huggingface. Treadway, thm Bao, Spe}'lcer Hance, Ca'rter McCardwell, Vincent thw’ HarrISfm

. Barclay, Amir Kavyan Ziabari, Zhongliang Chen, Rafael Ubal, José L. Abellan,
[13] Intel. 2025. Profiling with Intel Gaudi Software. https://docs.habana.ai/en/latest/ John Kim, Ajay]oshl, and DaVAIdAKa?h' 2019. MGPUSIm: enabling muItl—QPU

Profiling/Intel_Gaudi_Profiling/. performance modeling and optimization. In Proceedings of the 46th International
[14] JAX.2025. JAX Profiling computation. https://docs.jax.dev/en/latest/profiling. Symposium on CompuzﬁerArchltecture (, Phoenix, Arizona,) (ISCA ’19). Assgmatlon

html. for Computing Machinery, New York, NY, USA, 197-209. https://doi.org/10.
[15] Mahmoud Khairy, Zhesheng Shen, Tor M. Aamodt, and Timothy G. Rogers. 2020. 11‘%5/3307@0‘3322230 . L

Accel-Sim: An Extensible Simulation Framework for Validated GPU Modeling. In (38] Elliot Tanis and Rol‘)fzrt V. Hogg. 1977. Probability and Statistical Inference.

2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture [39] Luk Van Ertvelde, Filip Hellebaut, Lieven Eeckhout, and Koen De Bosschere. 2006.

(ISCA). 473-486. https://doi.org/10.1109/ISCA45697.2020.00047 NSL-BLRL: Efficient cache warmup for sampled processor simulation. In 39th
[16] Hyesoon Kim, Jaekyu Lee, Nagesh B Lakshminarayana, Jaewoong Sim, Jieun Annual S?mulation Symposium (ANSS‘ 06). IEEE, 8-pp.

Lim, and Tri Pho. 2023. Macsim: A CPU-GPU heterogeneous simulation framework [40] Oreste Villa, Mark Stephenson, David Nellans, and Stephen W Keckler. 2019.

user guide. Nvbit: A dynamic binary instrumentation framework for nvidia gpus. In Proceed-
[17] David M. Lane. 2025. OnlineStatBook: Sampling Distribution of the Mean. Re- ings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture.

372-383.

trieved Jan 17, 2025 from https://onlinestatbook.com/2/sampling_distributions/
samp_dist_mean.html

[18] Jaewon Lee, Euijun Chung, Saurabh Singh, Seonjin Na, Yonghae Kim, Jaekyu Lee,
and Hyesoon Kim. 2025. Let-Me-In:(Still) Employing In-pointer Bounds Metadata

[41

Thomas F Wenisch, Roland E Wunderlich, Michael Ferdman, Anastassia Ailamaki,
Babak Falsafi, and James C Hoe. 2006. SimFlex: statistical sampling of computer
system simulation. IEEE Micro 26, 4 (2006), 18-31.

for Fine-grained GPU Memory Safety. In 2025 IEEE International Symposium on [42] William Won, Taekyung Heo, Saced Rashidi, Srinivas Sridharan, Sudarshan

High Performance Computer Architecture (HPCA). IEEE, 1648-1661. Srinivasan, and Tushar Krishna. 2023. ASTRA-sim2.0: Modeling Hierarchical
[19] Ying Li, Yuhui Bao, Gongyu Wang, Xinxin Mei, Pranav Vaid, Anandaroop Ghosh, Networks anc! Disaggregatgd Systems for Large-model{ Training at Scale. In 2023

Adwait Jog, Darius Bunandar, Ajay Joshi, and Yifan Sun. 2025. TrioSim: A IEEE International Symposzum on Performance Analysis of Systems and Software

Lightweight Simulator for Large-Scale DNN Workloads on Multi-GPU Systems. (ISPASS). 283-294. _1'1ttps://d01Aurg/1OAl 1QQ/ISPASSW527‘2025'00055

(2025). [43] Roland E Wunderlich, Thomas F Wenisch, Babak Falsafi, and James C Hoe.
[20] David J. Lilja. 2000. Measuring Computer Performance: A Practitioner’s Guide. 2003. SMARTS: Accelerating microarchitecture simulation via rigorous statistical

sampling. In Proceedings of the 30th annual international symposium on Computer

Cambridge University Press.
architecture. 84-97.

[21] Changxi Liu, Yifan Sun, and Trevor E. Carlson. 2023. Photon: A Fine-grained e © o . L .
Sampled Simulation Methodology for GPU Workloads. In Proceedings of the 56th Zhibin Yu, Lieven Eeckhqut, Nilanjan Goswaml,' Tao Li, Lizy K Jol}n, Hai Jin,
Annual IEEE/ACM International Symposium on Microarchitecture (Toronto, ON, C]{‘e“gZhO“S Xu, and‘Junml'n Wu. 2015. GPGPU-MiniBench: accelerating GPGPU
Canada) (MICRO ’23). Association for Computing Machinery, New York, NY, micro-architecture simulation. IEEE Trans. Comput. 64, 11 (2015), 3153-3166.
USA, 1227-1241. https://doi.org/10.1145/3613424.3623773

[22] Xueyang Liu, Seonjin Na, Euijun Chung, Jiashen Cao, Jing Yang, and Hyesoon

Kim. 2025. Contention-Aware GPU Thread Block Scheduler for Efficient GPU-

SSD. IEEE Computer Architecture Letters (2025).

Stefano Markidis, Steven Wei Der Chien, Erwin Laure, Ivy Bo Peng, and Jeffrey S

Vetter. 2018. Nvidia tensor core programmability, performance & precision. In

2018 IEEE international parallel and distributed processing symposium workshops

[44

[23

https://rocm.docs.amd.com/projects/rocprofiler/en/latest/
https://rocm.docs.amd.com/projects/rocprofiler/en/latest/
https://doi.org/10.1145/3466752.3480100
https://doi.org/10.1109/ISPASS.2014.6844456
https://doi.org/10.1145/3620665.3640367
https://doi.org/10.1145/3620665.3640367
https://api.semanticscholar.org/CorpusID:11937761
https://doi.org/10.1109/IPDPS.2014.53
https://huggingface.co
https://huggingface.co
https://docs.habana.ai/en/latest/Profiling/Intel_Gaudi_Profiling/
https://docs.habana.ai/en/latest/Profiling/Intel_Gaudi_Profiling/
https://docs.jax.dev/en/latest/profiling.html
https://docs.jax.dev/en/latest/profiling.html
https://doi.org/10.1109/ISCA45697.2020.00047
https://onlinestatbook.com/2/sampling_distributions/samp_dist_mean.html
https://onlinestatbook.com/2/sampling_distributions/samp_dist_mean.html
https://doi.org/10.1145/3613424.3623773
https://doi.org/10.1109/ISPASS57527.2023.00030
https://arxiv.org/abs/2307.06435
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#warp-shuffle-functions
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#warp-shuffle-functions
https://docs.nvidia.com/deeplearning/cudnn/latest/api/overview.html
https://docs.nvidia.com/deeplearning/cudnn/latest/api/overview.html
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems
https://arxiv.org/abs/1912.01703
https://statproofbook.github.io/P/norm-lincomb
https://doi.org/10.1145/3307650.3322230
https://doi.org/10.1145/3307650.3322230
https://doi.org/10.1109/ISPASS57527.2023.00035

Swift and Trustworthy Large-Scale GPU Simulation with Fine-Grained Error Modeling and Hierarchical Clustering MICRO ’25, October 18-22, 2025, Seoul, Republic of Korea

A Artifact Appendix

A.1 Abstract

This artifact accompanies our MICRO ’25 paper "Swift and Trust-
worthy Large-Scale GPU Simulation with Fine-Grained Error Mod-
eling and Hierarchical Clustering" It includes profiling scripts,
benchmark suites, simulation infrastructure, and figure genera-
tion code to reproduce the key results: Figures 1, 7-12, and Ta-
bles 3, 4. The artifact provides pre-profiled results as well as in-
structions for collecting new measurements. WE profile and sim-
ulate CASIO, Huggingface, and Rodinia workloads using Mac-
Sim. This artifact enables evaluation of runtime heterogeneity,
sampling accuracy, and simulator validation. The full repository
and the following README . md files are publicly available at https:
//github.com/ejchung0406/STEM-AE.

A.2 Artifact check-list (meta-information)

Algorithm: STEM sampling methodology

Compilation: GCC,NVCC 12.X

Data set: CASIO, Huggingface, and Rodinia benchmark suites

Run-time environment: Python 3.9+, CUDA 12.4+, Linux

Hardware: NVIDIA GPU

Run-time state: Provided runtime CSVs and simulated traces

Execution: Command-line Shell and Python scripts

Metrics: Kernel execution time, simulation cycles, sampling error,

speedup

Output: Figures (PDFs), CSV logs, simulation stats

Experiments: Figure reproduction, sampling comparison, simula-

tor validation

o How much disk space required (approximately)?: 100 GB (in-
cluding benchmark data and profiling results)

e How much time is needed to prepare workflow (approxi-
mately)?: 1 hour (without full profiling)

e How much time is needed to complete experiments (approxi-

mately)?: 3 hours (for full profiling and full cycle-level simulation)

Publicly available?: Yes

Workflow automation framework used?: Shell scripts

Archived (provide DOI)?: https://doi.org/10.5281/zenodo.17059808

A.3 Description

A.3.1 How to access. The artifact is publicly available on Github
(https://github.com/ejchung0406/STEM-AE) and Zenodo (https://
doi.org/10.5281/zen0do.17059808).

A.3.2 Hardware dependencies. NVIDIA GPU (CUDA 12.4+ capa-
ble), 100+ GB of free disk space

A.3.3 Software dependencies. Python 3.9+ and pip, Nsight Systems
CLL Nsight Compute CLI, CUDA Toolkit 12+, gdown (for data
download), Git (for submodules), C++ build tools (GCC, Make),
NVCC.

A.3.4 Data sets. CASIO benchmark suite (with PyTorch models),
Huggingface transformer workloads, Rodinia GPU benchmarks
(with downloadable input data).

A.4 Installation

Follow the Quick Start instructions in the main README: https://
github.com/ejchung0406/STEM- AE?tab=readme- ov-file#quick-start.

A.5 Experiment workflow

Each figure directory contains: (1) Profiling scripts using Nsight
Systems and Compute (2) Pre-collected results as CSVs (3) Plotting
code to generate final figures.

Each subdirectory provides figure-specific instructions. The bun-
dled CSVs can be used to regenerate Figures 1 and 7-12 without
re-profiling.

A.6 Evaluation and expected results

You should be able to reproduce:

Figure 1: Runtime heterogeneity histograms

Figures 7-8 and Tables 3, 5: STEM sampling evaluation
Figure 9: Speedup vs. accuracy scatter plots

Figure 10: Limitations of existing sampling methods
Figure 11: STEM error bound sweeps

Figure 12 and Table 4: MacSim-based simulator validation

Generated data and plots (if available) should closely match the
MICRO paper results. Generated data and plots (where available) are
intended to closely match the results presented in the MICRO paper.
However, some artifacts only partially reproduce the experimental
results due to storage limitations for full traces and profiled data. In
some cases, CSV files or plotting scripts are pre-filled with values
obtained from profiling on our machines using the same or closely
related code.

Please note the following exceptions:

e Figures 7 and 11 were executed only once for this artifact
evaluation, whereas in the paper, we averaged over 10 inde-
pendent runs to reduce randomness from kernel sampling.
As a result, the artifact versions may show slight variations
from the final published figures.

e Table 4 requires full MacSim traces for all workloads the
paper uses. Due to storage constraints, we release only a
subset of workloads, which may result in minor discrepancies
compared to the paper.

e Figures 13 and 14 are not included in this artifact release.
These experiments require substantial storage and comput-
ing resources for profiling and trace generation. Neverthe-
less, the results can be reproduced independently by applying
the same methodology and profiling steps described in the
paper.

We appreciate your understanding regarding these limitations.

A.7 Methodology

Submission, reviewing and badging methodology:

o https://www.acm.org/publications/policies/artifact-review-and-

badging-current
e https://cTuning.org/ae

https://github.com/ejchung0406/STEM-AE
https://github.com/ejchung0406/STEM-AE
https://doi.org/10.5281/zenodo.17059808
https://github.com/ejchung0406/STEM-AE
https://doi.org/10.5281/zenodo.17059808
https://doi.org/10.5281/zenodo.17059808
https://github.com/ejchung0406/STEM-AE?tab=readme-ov-file#quick-start
https://github.com/ejchung0406/STEM-AE?tab=readme-ov-file#quick-start
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://cTuning.org/ae

	Abstract
	1 Introduction
	2 Observation and Motivation
	2.1 Heterogeneous runtime behavior of repeated GPU kernels
	2.2 Extracting kernel's runtime diversity with execution time distributions
	2.3 Using execution time as a kernel signature for robust and accurate sampling

	3 STEM and ROOT methodology
	3.1 Kernel-level sampling for GPU workloads
	3.2 STEM: Statistical Error Modeling for GPU simulation
	3.3 Optimizing STEM for multiple clusters
	3.4 ROOT: Fine-grained hierarchical GPU kernel clustering
	3.5 Running the sampled simulation

	4 Evaluation
	5 Experiment Setup
	5.1 Speedup and Error validation
	5.2 Limitations of current sampling methods
	5.3 Tradeoff between the sample size and error
	5.4 Validating STEM on various GPU microarchitectures
	5.5 Validation on microarchitectural metrics
	5.6 Scalability of STEM on large workloads

	6 Discussion
	6.1 Potential limitations of using execution time in kernel sampling
	6.2 Limitations and Future works

	7 Related works
	7.1 Workload sampling for CPUs
	7.2 Kernel-level workload sampling for GPUs
	7.3 Other sampling methods in GPU workloads

	8 Conclusion
	9 Appendix
	9.1 Solution for Problem 1.
	9.2 Proof of Theorem 3.1

	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results
	A.7 Methodology

