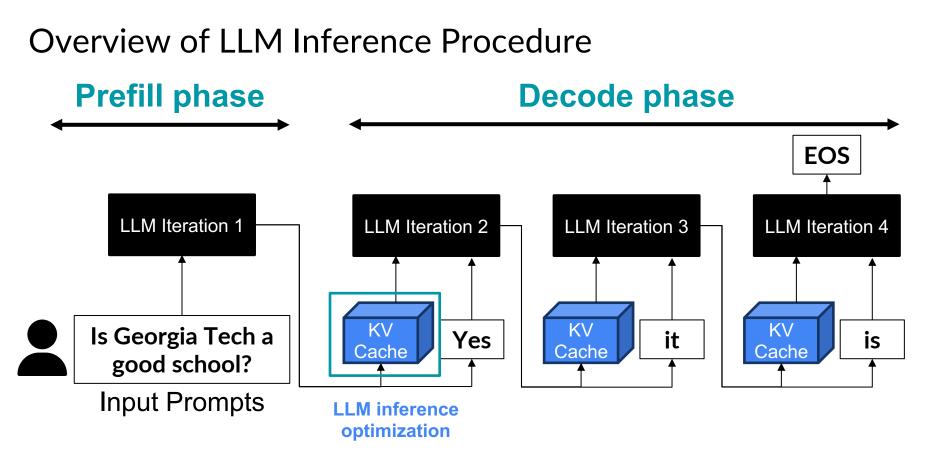
Understanding Performance Implications of LLM Inference on CPUs

Seonjin Na¹, Geonhwa Jeong¹, Byung Hoon Ahn², Jeffery Young¹, Tushar Krishna¹, Hyesoon Kim¹

¹Georgia Institute of Technology, ²University of California San Diego



Large Language Models (LLM) are widely adopted

Data centers equip with GPUs, NPUs to accelerate LLM inference

Prefill Phase vs Decode Phase

Yes

Prefill phase

Is Georgia Tech a good school?

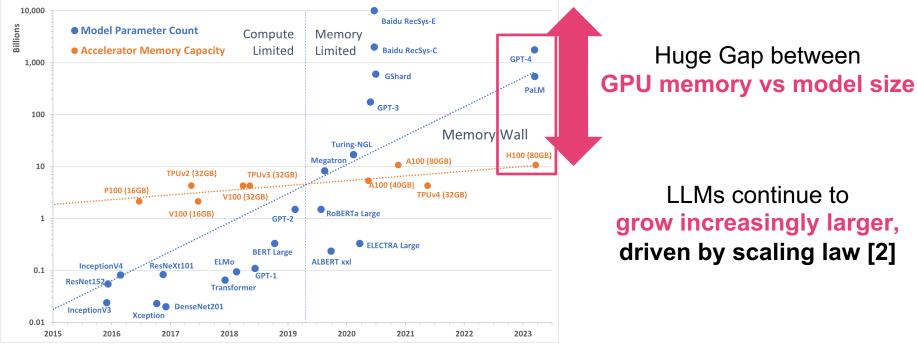
Input Prompts

Decode phase

Output tokens

Process all input prompts in parallel

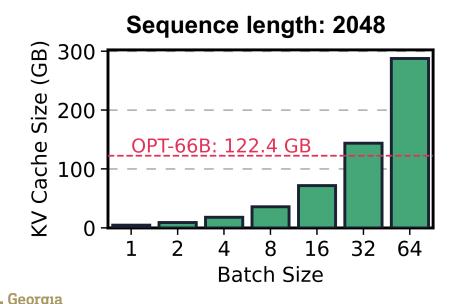
Compute bound


Process one token at a time

Memory bound

4

Challenges in LLM Inference: Large Model Size

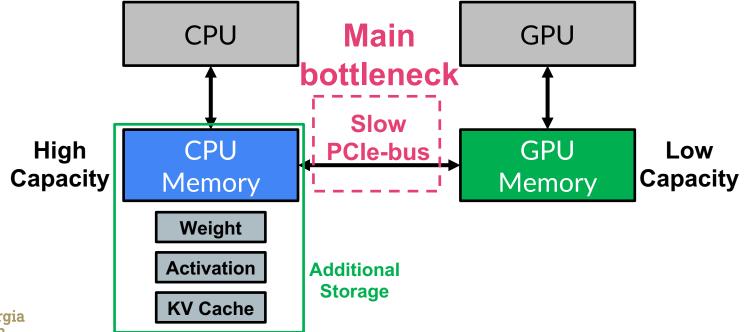


The *memory wall* of LLMs [1]

Georgia [1]: Reducing the Barriers to Entry for Foundation Model Training, Arxiv' 24 Tech. [2]: Scaling Laws for Neural Language Models

Challenges in LLM Inference: KV Cache Size

- KV Cache size **linearly** scales with **the sequence length and batch size**
 - The size of KV Cache = 2 (Key/ Value) * 2 (BF16) * d_layer * d_model * seq_len * batch_size

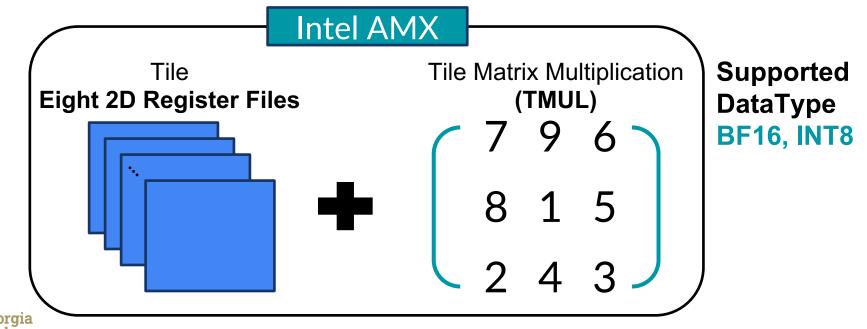


KV cache size is **288GB (FP16)** with 2048 sequence length, 64 batch size for OPT-66B

Requires at least 4 H100-80GB GPU

Offloading-based LLM Inference on GPUs

• LLM weights, activation, KV cache are offloaded to CPU memory


Possible Hardware Options for LLM Inference

Options	Cost	Accuracy	Latency	Main
CPU	Low	High	Low-High	Focus
Single-GPU with CPU offloading	Medium	High	Low- High	FUCUS
Single-GPU with quantization (without CPU- offloading)	Medium	High- Medium	Low	
Multi-GPUs	Very High	High	Very Low	

Opportunities in Latest CPUs: (1) Dedicated Accelerators

- Recent CPUs offer GEMM accelerators with extended ISA support
 - Intel Advanced Matrix eXtension (AMX), ARM Scalable Matrix Extension (SME), etc.

Opportunities in Latest CPUs: (2) Large Memory Capacity

• CPU servers provide **larger memory capacity** than that of GPUs

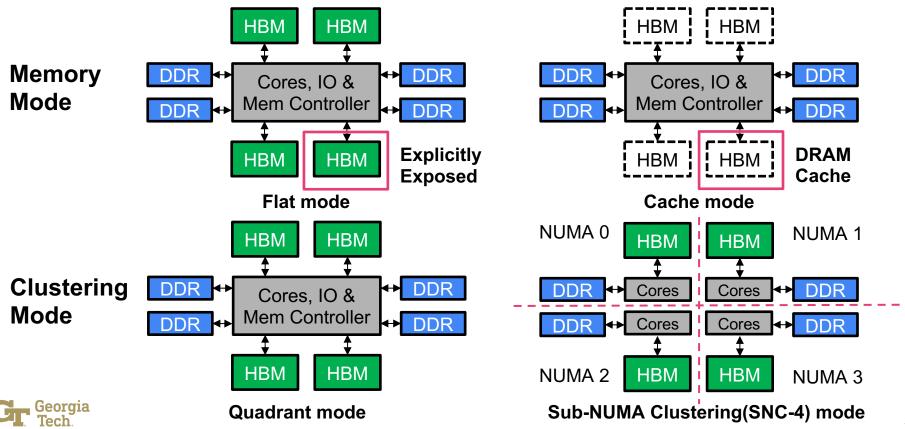
CPU Could be expanded

There are two key opportunities for CPU LLM inference **1. Dedicated accelerator with ISA extension 2. Larger memory capacity with HBM**

High Capacity Low bandwidth Low Capacity High bandwidth A INSPICE Capacity

NVIDIA H100 GPU HBM 80GB

Evaluation Methodology

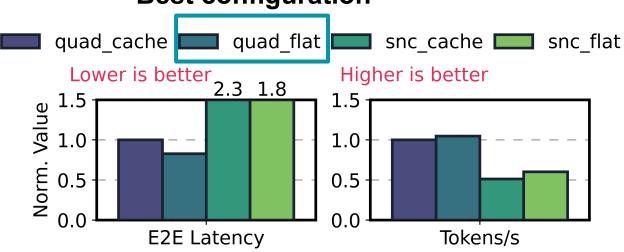

- Use Intel Extension for Pytorch (IPEX) for CPU LLM inference
- Evaluated LLMs: OPT (1.3B, 6.7B, 13B, 30B, 66B), LLaMA2 (7B, 13B, 70B)
- Metrics: End-to-End Latency & Throughput (Generated output tokens/s)

	Sapphire Rapids CPU (SPR)	
CPU Model	Xeon 4 th Max 9468	
# of Cores (Per socket) / # of Socket	48 / 2	
Compute Throughput	25.6 (AVX-512) / 206.4 (AMX) TFLOPS	
L1/L2 (per core)	48KB/ 2MB	
LLC	105MB	
Memory Capacity	DDR5 512GB, HBM 128GB	
Memory Bandwidth	DDR5: 233.8 GB/s, HBM: 588 GB/s	

Memory bandwidth is measured on single-socket using STREAM benchmark

Key Intel CPU Configurations: Memory, Clustering Modes

Questions We Aim to Answer for Optimal Performance


• What is **the optimal clustering and memory configuration** for LLM inference?

• What is **the optimal number of CPU cores** for LLM inference?

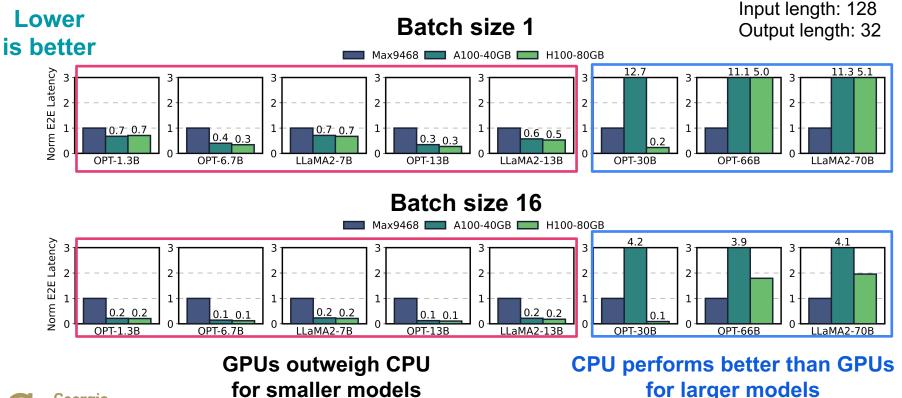
Performance Impact of Clustering and Memory Modes

- Compare the averaged performance across all LLMs and batch sizes (1 to 32)
 - Each result is normalized to **Quadrant_Cache (quad_cache)** configuration
 - HBM memory is prioritized for flat mode using Linux numactl

Performance Impact of the Number of CPU Cores

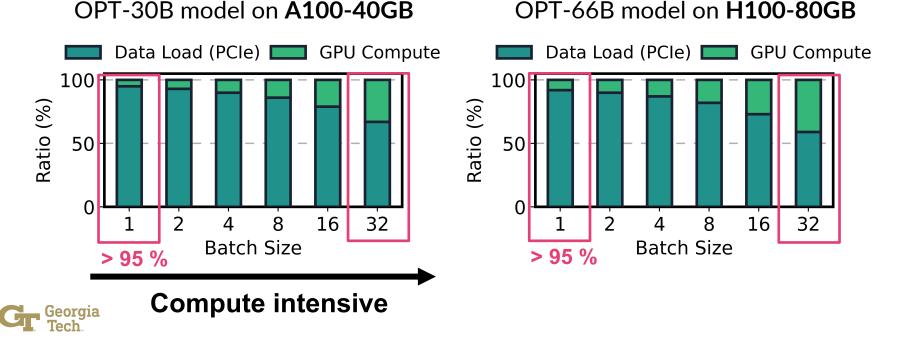
- Compare the averaged performance across all LLMs and batch sizes (1 to 32)
 - Each result is normalized to **12 cores** configuration
 - All configurations use quad_flat mode

Using Quad with Flat and 48 cores delivers the best results


GPU Server Configurations

• We use **FlexGen** for offloading-based LLM inference on GPUs

	A100-40GB GPU	H100-80GB GPU
# of SMs	108	132
Compute Throughput	312 TFLOP	989 TFLOP
L1/L2	192KB / 40MB	256KB / 50MB
Memory Capacity	HBM 40GB	HBM 80GB
Memory Bandwidth	1299.9 GB/s	1754.4 GB/s
Interconnect	PCIe 4.0, 64GB/s	PCIe 5.0, 128GB/s


Performance Comparison: SPR Max CPU vs GPUs

Georgia L. Tech.

GPU Execution Time Breakdown

• Offloading-based LLM inference suffers from significant PCIe transfer times

More Results In Our Paper

• Performance comparison between different CPU gens (ICL CPU vs SPR CPU)

• Detailed performance analysis for other key metrics using perf counters

• Potential optimizations for efficient CPU LLM inference

• Sensitivity study to the input sequence length

Conclusion

- LLM inference demands substantial memory, often exceeding GPU memory
 - Offloading-based LLM inference suffer from performance degradation due to PCIe transfer
- Key opportunities for CPU LLM inference
 - Dedicated GEMM Accelerators with ISA support
 - Larger memory capacity with HBM that could be further expanded CXL
- Evaluation results show CPUs can outperform GPUs for larger models

